scholarly journals Occurrence of Alfalfa mosaic virus in Soybean in Tennessee

Plant Disease ◽  
2010 ◽  
Vol 94 (12) ◽  
pp. 1505-1505 ◽  
Author(s):  
O. L. Fajolu ◽  
R.-H. Wen ◽  
M. R. Hajimorad

Alfalfa mosaic virus (AMV), a member of the genus Alfamovirus in the family Bromoviridae, naturally infects a wide range of plant species (1). Soybean (Glycine max (L.) Merr.) has seldom been reported as a natural host of AMV and there are limited reports of detection of AMV in field-grown soybean plants (4). However, AMV incidence in soybean fields in the midwestern United States has been on the rise in recent years, which is partly attributed to the introduction of the soybean aphid (Aphis glycines) (1,4). In June 2009, soybean plants of cv. Lee68 exhibiting moderate leaf distortion, mottling, and stunting were observed at the East Tennessee Research and Education Center. Leaf samples from 18 symptomatic plants were collected and the sap was extracted and analyzed by antigen-coated indirect ELISA (3) with polyclonal antibodies against AMV, Soybean mosaic virus (SMV), and Bean pod mottle virus (BPMV). None of the samples tested positive for BPMV, but all were found to be infected with SMV. Sap extract from 1 of 18 plants tested positive for AMV and SMV. Sap from this infected plant ground in 10 mM phosphate buffer, pH 7.0, was mechanically inoculated to Carborundum-dusted unifoliate leaves of PI96983, which contains the dominant Rsv1-locus conferring functional immunity to a majority of SMV strains (2). AMV, not SMV, was detected by ELISA in the systemically infected trifoliolate leaves that exhibited moderate mottling, mild leaf distortion, and stunting 14 days postinoculation. Sap was extracted from the infected tissues and the virus was passaged four times through PI96983 before being inoculated to Phaseolus vulgaris cv. Blue Lake. A local lesion isolate was obtained following three successive passages in this host and the isolate was propagated in soybean cv. Williams82. The biologically purified isolate was capable of infecting soybean cvs. L78-379 (Rsv1), L81-4420 (Rsv1), L29 (Rsv3), V94-5152 (Rsv4), Lee68, and Colfax upon sap inoculation. The infected plants exhibited a range of systemic symptoms including mottling, leaf distortion, necrosis, chlorosis, and moderate stunting. To characterize the virus further, total RNA was extracted from infected Williams82 leaf tissues with the RNeasy Plant Mini Kit (Qiagen, Valencia, CA). The RNA served as a template for cDNA synthesis in the presence of random primers. The resultant cDNA served as a template in a PCR assay with primers 1193 (forward) (5′-AGCTGAATTCATGAGTTCTTCACAAC-3′) and 1858 (reverse) (5′-GCTAGCGGCCGCTCAATGACGATC-3′) corresponding to nucleotides 1,193 to 1,210 and 1,858 to 1,840 of RNA3 from AMV-Kr (GenBank Accession No. AB126032), respectively. The amplified fragments were purified and directly sequenced bidirectionally using the same primers. BLAST analysis of the resultant nucleotide sequences showed 98% identity to an AMV isolate from a naturally infected soybean plant in Illinois (GenBank Accession No. HQ185569), and 97% identity to an isolate described from P. vulgaris in the United States (GenBank Accession No. AY340070.1). To our knowledge, this is the first report of natural infection of soybean by AMV in Tennessee. References: (1) J. Bol. Mol. Plant Pathol. 4:1, 2003. (2) M. R. Hajimorad and J. H. Hill. Mol. Plant-Microbe Interact. 14:587, 2001. (3) M. Malapi-Nelson et al. Plant Dis. 93:1259, 2009. (4) E. E. Mueller and C. R. Grau. Plant Dis. 91:266, 2007.

Plant Disease ◽  
2008 ◽  
Vol 92 (7) ◽  
pp. 1132-1132 ◽  
Author(s):  
M. C. Cebrián ◽  
M. C. Córdoba-Sellés ◽  
A. Alfaro-Fernández ◽  
J. A. Herrera-Vásquez ◽  
C. Jordá

Viburnum sp. is an ornamental shrub widely used in private and public gardens. It is common in natural wooded areas in the Mediterranean Region. The genus includes more than 150 species distributed widely in climatically mild and subtropical regions of Asia, Europe, North Africa, and the Americas. In January 2007, yellow leaf spotting in young plants of Viburnun lucidum was observed in two ornamental nurseries in the Mediterranean area of Spain. Symptoms appeared sporadically depending on environmental conditions but normally in cooler conditions. Leaf tissue from 24 asymptomatic and five symptomatic plants was sampled and analyzed by double-antibody sandwich (DAS)-ELISA with specific polyclonal antibodies against Tomato spotted wilt virus (TSWV) (Loewe Biochemica, Sauerlach, Germany) and Alfalfa mosaic virus (AMV) (SEDIAG S.A.S, Longvic, France). All symptomatic plants of V. lucidum were positive for Alfalfa mosaic virus (AMV). The presence of AMV was tested in the 29 samples by one-step reverse transcription (RT)-PCR with the platinum Taq kit (Invitrogen Life Technologies, Barcelona, Spain) using primers derived from a partial fragment of the coat protein gene of AMV (2). The RT-PCR assays produced an expected amplicon of 700 bp in the five symptomatic seropositive samples. No amplification product was observed when healthy plants or a water control were used as a template in the RT-PCR assays. One PCR product was purified (High Pure PCR Product Purification Kit; Roche Diagnostics, Mannheim, Germany) and directly sequenced (GenBank Accession No. EF427449). BLAST analysis showed 96% nucleotide sequence identity to an AMV isolate described from Phlox paniculata in the United States (GenBank Accession No. DQ124429). This virosis has been described as affecting Viburnum tinus L. in France (1). To our knowledge, this is the first report of natural infection of Viburnum lucidum with AMV in Spain, which might have important epidemiological consequences since V. lucidum is a vegetatively propagated ornamental plant. References: (1) L. Cardin et al. Plant Dis. 90:1115, 2006. (2) Ll. Martínez-Priego et al. Plant Dis. 88:908, 2004.


Plant Disease ◽  
2012 ◽  
Vol 96 (11) ◽  
pp. 1705-1705 ◽  
Author(s):  
O. A. Abdalla ◽  
A. Ali

Alfalfa mosaic virus (AMV), a member of the genus Alfamovirus, family Bromoviridae (1), has been reported in 44 states in the United States excluding Oklahoma. During a cucurbit survey in the summer of 2010, severe mosaic and mottling symptoms were observed on many peppers (Capsicum annuum) and white clover (Trifolium repens) plants in Tulsa, Oklahoma. Symptomatic leaf samples from 15 pepper and two white clover plants were collected in the Bixby area and analyzed serologically by dot-immunobinding assay (DIBA) using specific polyclonal antibodies against AMV (Agdia, Inc). Seven out of 15 pepper samples and both white clover samples were tested positive by DIBA to AMV. The remaining symptomatic samples were positive to Cucumber mosaic virus (CMV). Total RNA was extracted from DIBA positive AMV samples by Tri-reagent method. A small aliquot of total RNA was tested by reverse transcription (RT)-PCR using specific primers: AMV-F 5′ GTCCGCGATCTCTTAAAT 3′ and AMV-R 5′ GAAGTTTGGGTCGAGAGA 3′ that were designed to amplify 900 bp of the AMV-RNA 3. Analysis of the PCR products on agarose gel electrophoreses showed that all tested samples showed a band of the expected size while DIBA negative AMV samples did not produce any band. The amplified PCR product (900 bp) obtained from pepper and white clover were cleaned with PCR purification kit (Qiagen, Germantown, MD) and directly sequenced bi-directionally using the above primers. Sequence analysis confirmed that this virus shared 97% identity at nucleotide sequence with RNA 3 of AMV isolate from Madison-USA (GenBank Accession No. K02703). For biological and morphological characterization of the virus, eight pepper plants were mechanically inoculated using 0.1 M K2HPO4 buffer (pH 7.2) with total RNA extracted from AMV positive pepper or white clover plant samples. One to two weeks post-inoculation, all inoculated plants produced severe mosaic, mottling, and stunting. Virus-like particles preparations were obtained from these symptomatic plants according to our previously described method (2) and electron microcopy examination showed typical AMV particles. These biological and morphological data further confirmed the presence of AMV infecting pepper and clover in Oklahoma. AMV is a significant pathogen worldwide and infects more than 600 species in 70 families, especially alfalfa, pepper, soybean, and tobacco (3). AMV has a worldwide distribution, including the United States, and particularly the Midwestern U.S. where the incidence of the virus is on the rise recently because of the presence of its vector (Aphis glycines) (4). To our knowledge, this is the first report of AMV infecting crops in Oklahoma, which could pose a threat to other economic crops grown in Oklahoma, especially soybean. References: (1) E. E. Mueller et al. Plant Dis. 91:266, 2007. (2) A. Ali et al. Plant Dis. 96:243, 2012. (3) J. F. Bol. Mol. Plant Path.4:1, 2003. (4) M. Malapi-Nelson et al. Plant Dis.93:1259, 2009.


Plant Disease ◽  
2012 ◽  
Vol 96 (9) ◽  
pp. 1352-1357 ◽  
Author(s):  
B. Khatabi ◽  
B. He ◽  
M. R. Hajimorad

Alfalfa mosaic virus (AMV), a pathogen of a wide range of plant species, including Glycine max (soybean), is poorly immunogenic. Polyclonal antibodies were generated against bacterially expressed recombinant coat proteins (rCPs) of two biologically distinct AMV strains in rabbits and compared with those raised against native and glutaraldehyde-treated virions of the same strains. Analyses showed that sera against rCPs had comparable antibody titers in indirect enzyme-linked immunosorbent assay with those raised against virions when soybean sap containing homologous viruses served as antigens. Polyclonal antibodies against rCPs were specific, sensitive, and detected all AMV isolates that originated from soybean fields from geographically different regions of the United States. Comparison of CP genes of these isolates showed 96 to 99 and 96 to 100% nucleotide and amino acid sequence identities, respectively, suggesting that they are all closely related. This was further confirmed by phylogenetic analysis where they were all clustered together along with representative AMV strains belonging to group I. Collectively, our data demonstrate that, despite poor immunogenicity of AMV, polyclonal antibodies against rCP are effective probes for detection and diagnosis of the virus.


Plant Disease ◽  
2008 ◽  
Vol 92 (3) ◽  
pp. 486-486 ◽  
Author(s):  
R. A. Naidu ◽  
G. Karthikeyan ◽  
S. Jarugula ◽  
M. Nelson ◽  
A. Morrell

Perennial cultivars of Coreopsis, a genus native to the United States, are widely grown for aesthetics in home gardens and roadsides and are increasingly used in conservation projects and native-plant gardens. During the spring and summer of 2006 and 2007, Coreopsis auriculata ‘Nana’ plants with foliar symptoms showing chlorotic spots and rings were observed in wholesale and retail nurseries in Washington. Nicotiana benthamiana plants inoculated with crude sap extracts from symptomatic leaves of C. auriculata ‘Nana’ obtained from two different sources showed systemic mosaic mottling symptoms, indicating the presence of a virus. Symptomatic leaf samples from C. auriculata ‘Nana’ and N. benthamiana tested positive in antigen-coated plate-ELISA with potyvirus group-specific monoclonal antibodies (Agdia Inc., Elkhart, IN). Additional analysis by ELISA was positive for Lettuce mosaic virus (LMV; Agdia Inc.). To confirm these results, total RNA extracted from symptomatic N. benthamiana leaves was subjected to reverse transcription (RT)-PCR using potyvirus degenerate primers (PNIbF5: 5′-GCCAGCCCTCCACCGTNGTNGAYAA-3′ and PCPR1: 5′-GGGGAGGTGCCGTTCTCDATRCACCA-3′) covering the 3′ end of the NIb gene and the 5′ end of the CP gene (1). A single DNA band of approximately 1,000 bp amplified from symptomatic leaves of two independent plants was cloned separately into pCR2.1 (Invitrogen Corp., Carlsbad, CA). Two independent clones per amplicon were sequenced from both orientations. Pairwise comparison of these sequences with corresponding nucleotide sequences of potyviruses in GenBank showed 93 to 99% identity in the NIb/CP region with LMV sequences from France (GenBank Accession Nos. X97704, X65652, and X97705), China (GenBank Accession Nos. AJ306288 and AJ488153), and Brazil (GenBank Accession No. AJ278854). These results confirmed the presence of LMV in symptomatic leaves of N. benthamiana and C. auriculata ‘Nana’. The occurrence of LMV has been reported in ornamental plants that included freeway daisy (Osteospermum fruticosum), lisianthus (Eustoma grandiflorum), and gazanias (Gazania spp.) (2–4). To our knowledge, this is the first documented evidence for the occurrence of LMV in Coreopsis, an economically important perennial ornamental widely grown in the United States. Although the origin of LMV in C. auriculata ‘Nana’ is not known, distribution of cuttings from LMV-infected C. auriculata ‘Nana’ plants to wholesale and retailers within Washington and across the country by movement of plant material could pose a risk to other ornamentals and crops like lettuce because of the broad host range of LMV and its potential transmission by several species of polyphagous aphids. Seed transmission as a potential means of dissemination of LMV in Coreopsis has not been examined, although the virus is seedborne in other plants such as lettuce. References: (1) Y.-C. Hsu et al. J. Virol. Methods 128:54, 2005. (2) V. Lisa et al. Inf. Fitopatol. 3:58, 1995. (3). D. C. Opgenorth et al Plant Dis. 75:751, 1991. (4) F. M. Zerbini et al. Plant Dis. 81:641, 1997.


Plant Disease ◽  
2013 ◽  
Vol 97 (9) ◽  
pp. 1258-1258 ◽  
Author(s):  
B. Lockhart ◽  
D. Mollov ◽  
M. Daughtrey

In spring of 2012, a previously unrecorded virus-like disease characterized by conspicuous yellow leaf blotching (calico symptoms) was observed in plants of Hydrangea macrophylla in a single location in Southampton, NY. Bacilliform and spherical particles resembling those of Alfalfa mosaic virus (AMV) were observed by transmission electron microscopy (TEM) in partially purified extracts from symptomatic leaf tissue. The identity of the virus was confirmed by immunosorbent electron microscopy (ISEM) (4) using antiserum to AMV (ATCC PVAS 92) that both trapped and decorated the virions. Three primer pairs designed from available AMV RNA 1, RNA 2, and RNA 3 genomic sequences were used to generate amplicons from the hydrangea AMV isolate. Reverse-transcription (RT)-PCR was done using total RNA extracted from symptomatic hydrangea leaf tissue with a Qiagen RNeasy kit, and Ready-to-Go RT-PCR beads (GE Healthcare). Amplicons of 1,049, 1,013, and 658 bp were obtained using the primer pairs AMV1F (5′-ATCCACCGATGCCAGCCTTA)/AMV1R (5′-TTCCGCCTCACTGCTGTCTG), AMV2F (5′-GATCGCCGGAAGTGATCCAG)/AMV2R (5′-TCACCGGAAGCAACAACGAA), and AMV3F (5′-GCCGGTTCTCCAAAGGGTCT)/AMV3R (5′-CGCGTCGAAGTCCAGACAGA), respectively. The PCR products were cloned using a TOPO TA cloning kit (Invitrogen) and three clones of each were sequenced. The sequences obtained from the hydrangea AMV RNA 1 (JX154090), RNA 2 (JX154091), and RNA 3 (JX154092) had 95 to 98% nucleotide sequence identity to homologous genomic sequences of known AMV isolates. To our knowledge, this is the first report of AMV occurrence in H. macrophylla in the United States. This virus has been reported to occur in H. macrophylla in British Columbia (3), but in a previous survey its presence was not detected in hydrangeas in the United States (1). A report of possible AMV infection in H. macrophylla in Italy (2) was based solely on symptomatology and cross-protection tests and therefore cannot be verified. The AMV-infected hydrangea plants were found by ISEM to also contain low concentrations of Hydrangea ringspot virus (HRSV) and Hydrangea chlorotic mottle virus (HdCMV). However, based on previous evidence of single and mixed infections (3), it is unlikely that the calico symptoms observed were influenced by the presence of HRSV and HdCMV. This report is of interest both because AMV, unlike HRSV and HdCMV, causes foliar symptoms that would render hydrangea plant unmarketable, and because the disease can be spread by a number of common aphid species that transmit AMV. It will also serve to alert growers and diagnosticians to the potential threat posed by AMV infection. References: (1) T. C. Allen et al. Acta Hortic. 164:85, 1985. (2) G. Belli. Phytopathol. Mediterr. 7:70, 1968. (3) A. W. Chiko and S. E. Godkin. Plant Dis. 70:541, 1986. (4) B. E. L. Lockhart et al. Phytopathology 82:691, 1992.


2017 ◽  
Vol 5 (9) ◽  
Author(s):  
J. E. Polston ◽  
M. A. Londoño ◽  
A. L. Cohen ◽  
M. Padilla-Rodriguez ◽  
K. Rosario ◽  
...  

ABSTRACT Euphorbia mosaic virus (EuMV) was found in a symptomatic passionfruit (Passiflora edulis) plant from Homestead, Florida, USA, as well as in the symptomatic weed Euphorbia heterophylla. This is the first identification of EuMV in Florida and the United States and the first report of a natural infection of passionfruit by EuMV.


Author(s):  
David Vogel

This book examines the politics of consumer and environmental risk regulation in the United States and Europe over the last five decades, explaining why America and Europe have often regulated a wide range of similar risks differently. It finds that between 1960 and 1990, American health, safety, and environmental regulations were more stringent, risk averse, comprehensive, and innovative than those adopted in Europe. But since around 1990 global regulatory leadership has shifted to Europe. What explains this striking reversal? This book takes an in-depth, comparative look at European and American policies toward a range of consumer and environmental risks, including vehicle air pollution, ozone depletion, climate change, beef and milk hormones, genetically modified agriculture, antibiotics in animal feed, pesticides, cosmetic safety, and hazardous substances in electronic products. The book traces how concerns over such risks—and pressure on political leaders to do something about them—have risen among the European public but declined among Americans. The book explores how policymakers in Europe have grown supportive of more stringent regulations while those in the United States have become sharply polarized along partisan lines. And as European policymakers have grown more willing to regulate risks on precautionary grounds, increasingly skeptical American policymakers have called for higher levels of scientific certainty before imposing additional regulatory controls on business.


2008 ◽  
Vol 9 (1) ◽  
pp. 42 ◽  
Author(s):  
Rayapati A. Naidu ◽  
Gandhi Karthikeyan

The ornamental Chinese wisteria (Wisteria sinensis) is a woody perennial grown for its flowering habit in home gardens and landscape settings. In this brief, the occurrence of Wisteria vein mosaic virus (WVMV) was reported for the first time in Chinese wisteria in the United States of America. Accepted for publication 18 June 2008. Published 18 August 2008.


2011 ◽  
Vol 12 (1) ◽  
pp. 34 ◽  
Author(s):  
Craig G. Webster ◽  
William W. Turechek ◽  
H. Charles Mellinger ◽  
Galen Frantz ◽  
Nancy Roe ◽  
...  

To the best of our knowledge, this is the first report of GRSV infecting tomatillo and eggplant, and it is the first report of GRSV infecting pepper in the United States. This first identification of GRSV-infected crop plants in commercial fields in Palm Beach and Manatee Counties demonstrates the continuing geographic spread of the virus into additional vegetable production areas of Florida. This information indicates that a wide range of solanaceous plants is likely to be infected by this emerging viral pathogen in Florida and beyond. Accepted for publication 27 June 2011. Published 25 July 2011.


1939 ◽  
Vol 33 (2) ◽  
pp. 283-291
Author(s):  
Clark H. Woodward

In the conduct of foreign policy and the participation of the United States in international affairs, the relation between the Navy and the Foreign Service is of vital importance, but often misunderstood. The relationship encompasses the very wide range of coördination and coöperation which should and must exist between the two interdependent government agencies in peace, during times of national emergency, and, finally, when the country is engaged in actual warfare. The relationship involves, as well, the larger problem of national defense, and this cannot be ignored if the United States is to maintain its proper position in world affairs.


Sign in / Sign up

Export Citation Format

Share Document