scholarly journals ‘Candidatus Phytoplasma brasiliense’ (16SrXV-A Subgroup) Associated with Cauliflower Displaying Stunt Symptoms in Brazil

Plant Disease ◽  
2013 ◽  
Vol 97 (3) ◽  
pp. 419-419 ◽  
Author(s):  
M. C. Canale ◽  
I. P. Bedendo

Cauliflower stunt, caused by a phytoplasma of the group 16SrIII-J, was reported in the beginning of 2012 and has occurred with high incidences of infected plants (up to 90%) in crops located in the state of São Paulo in the southeast region of Brazil (3). Diseased plants exhibit general stunting, malformation of inflorescence, reddening leaves, and vessel necrosis (3). Further investigations with plants displaying identical symptoms collected in Nova Bassano, state of Rio Grande do Sul, Brazilian south region, have revealed the presence of a phytoplasma distinct from 16SrIII-J subgroup. Four symptomatic plus four asymptomatic samples were assayed from a field, and the presence of phytoplasma was evidenced by nested PCR assays performed with primers P1/Tint followed by R16F2n/16R2 in three affected plants, which amplified genomic fragments of 1.2 kb from the 16S rRNA gene. No amplification occurred in non-affected samples. Nested PCR products analyzed by conventional RFLP (2) using the enzymes AluI, RsaI, KpnI, HpaII, MseI, HhaI, MboI, and BstUI pointed to the presence of a phytoplasma belonging to group 16SrXV-A in all three phytoplasma-positive samples. Virtual RFLP analysis based on restriction patterns, derived from in silico digestion with 17 endonucleases (4), confirmed the previous results obtained from those samples by conventional RFLP. The 16S rDNA sequences of this phytoplasma identified in cauliflower (GenBank Accession No. JN818845) shared 99% sequence similarity with the reference phytoplasma for subgroup 16SrXV-A (Hibiscus witches'-broom phytoplasma, AF147708), designated ‘Candidatus Phytoplasma brasiliense.’ Analysis of putative restriction sites showed excellent identity between the phytoplasma studied here and the reference phytoplasma. In addition, the arrangement of branches of a phylogenetic tree constructed with phytoplasmas representing diverse 16Sr groups and subgroups supported that the phytoplasma found in cauliflower is closed related to the representative of the subgroup 16SrXV-A. Association of distinct phytoplasmas with the same kind of disease is not rare and the present pathosystem constitutes a new example. Members of this subgroup have been described almost exclusively in Brazil and previously reported in Sida sp., periwinkle, and hibiscus (1). In some European countries, as well as in the United States and Canada, phytoplasmas belonging to group 16SrI has been associated with this type of disease, which has been reported for various species of the genus Brassica, as published in previous works (3). However, a representative of the group 16SrVI was described in infected plants in Iran (3). Although the 16SrIII-J phytoplasma is currently the most important agent of cauliflower stunt in Brazil, and members of 16SrI are prevalent in other countries, this study revealed that a 16Sr XV-A phytoplasma may be also associated with this important disease of brassicas. Besides, the findings here reported expand the natural host range, including cauliflower as new host for phytoplasmas affiliated with 16SrXV-A. References: (1) B. Eckstein et al. Plant Dis. 95:363, 2009. (2) I. M. Lee et al. Int. J. Syst. Bacteriol. 48:1153, 1998. (3) M. C. C. Rappussi et al. Eur. J. Plant. Pathol. 133:829, 2012. (4) Wei et al. Int. J. Syst. Evol. Microbiol. 57:1855, 2007.

2011 ◽  
Vol 61 (6) ◽  
pp. 1454-1461 ◽  
Author(s):  
Ana Paula de Oliveira Amaral Mello ◽  
Bárbara Eckstein ◽  
Daniela Flores ◽  
Patrícia Fabretti Kreyci ◽  
Ivan Paulo Bedendo

Symptoms resembling giant calyx, a graft-transmissible disease, were observed on 1–5 % of eggplant (aubergine; Solanum melongena L.) plants in production fields in Sao Paulo state, Brazil. Phytoplasmas were detected in 12 of 12 samples from symptomatic plants that were analysed by a nested PCR assay employing 16S rRNA gene primers R16mF2/R16mR1 followed by R16F2n/R16R2. RFLP analysis of the resulting rRNA gene products (1.2 kb) indicated that all plants contained similar phytoplasmas, each closely resembling strains previously classified as members of RFLP group 16SrIII (X-disease group). Virtual RFLP and phylogenetic analyses of sequences derived from PCR products identified phytoplasmas infecting eggplant crops grown in Piracicaba as a lineage of the subgroup 16SrIII-J, whereas phytoplasmas detected in plants grown in Bragança Paulista were tentatively classified as members of a novel subgroup 16SrIII-U. These findings confirm eggplant as a new host of group 16SrIII-J phytoplasmas and extend the known diversity of strains belonging to this group in Brazil.


3 Biotech ◽  
2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Madem Gurivi Reddy ◽  
Virendra Kumar Baranwal ◽  
Doddachowdappa Sagar ◽  
Govind Pratap Rao

AbstractAn investigation was carried out to identify and characterize the phytoplasma and viruses associated with the chickpea varieties showing severe stunting, leaf reddening, yellowing and phyllody symptoms during the summer season of 2018–2019 and 2019–2020 in eight states of India. The average disease incidence was recorded from 3 to 32% in different states. The presence of chickpea chlorotic dwarf virus (CpCDV) was confirmed in thirty-seven chickpea samples by amplification of CpCDV coat protein gene and sequence comparison analysis. No record of association of luteovirus, polerovirus and cucumovirus could be detected in any of the symptomatic chickpea samples by RT-PCR assay. Brassica nigra, B. juncea, Lens culinaris, two weeds (Heteropogan contartus, Aeschynomene virginica) and one leafhopper (Amarasca biguttula) were identified as new putative hosts for CpCDV. Association of peanut witches’ broom phytoplasma was confirmed in twenty-eight chickpea samples, Sesamum indicum, five weeds hosts and two leafhopper species (Exitianus indicus, Empoasca motti) using nested PCR assays with primer pairs P1/P7 and R16F2n/R16Rn. The results of phytoplasma association in plants and leafhopper samples were further validated by using five multilocus genes (secA, rp, imp, tuf and secY) specific primers. Sequence comparison, phylogenetic and virtual RFLP analysis of 16S rRNA gene and five multilocus genes confirmed the identity of association of 16SrII-C and 16SrII-D subgroups of phytoplasmas strain with chickpea samples collected from Andhra Pradesh (AP), Telangana, Karnataka, Madhya Pradesh, Uttar Pradesh and New Delhi. Mixed infection of phytoplasma (16SrII-D) and CpCDV was also detected in symptomatic chickpea samples from AP and Telangana. The reports of association of 16SrII-C subgroup phytoplasma in chickpea and 16SrII-D subgroup phytoplasma in C. sparsiflora and C. roseus are the new host records in world and from India, respectively.


Plant Disease ◽  
2011 ◽  
Vol 95 (3) ◽  
pp. 363-363 ◽  
Author(s):  
B. Eckstein ◽  
J. C. Barbosa ◽  
J. A. M. Rezende ◽  
I. P. Bedendo

Sida is a genus of flowering herbs in the family Malvaceae, which includes several species that are weeds in Brazil. Plants of a Sida sp. exhibiting symptoms characterized by stunting, chlorosis, small leaves, and witches'-broom, indicative of infection by phytoplasmas, were found in a field previously cultivated with tomato, located in the region of Campinas, State of São Paulo, in December 2008. To demonstrate the presence of phytoplasmas in diseased tissues, DNA was extracted from shoots and leaves from three symptomatic and eight asymptomatic plants. Nested PCR was performed using primers P1/Tint followed by primer pair R16F2n/R16R2 (1). DNA fragments of 1.2 kb, corresponding to 16S rDNA, were amplified only for DNA from two symptomatic samples. Phytoplasma identification was initially carried out by restriction fragment length polymorphism (RFLP) analysis through digesting the PCR products with the restriction enzymes AluI, HhaI, HaeIII, HpaII, MseI, and RsaI. The two phytoplasma isolates found to be infecting a Sida sp. showed identical RFLP patterns, which were indistinguishable from the phytoplasma previously reported in association with hibiscus (Hibiscus rosa-sinensis) witches'-broom in Brazil (2). Nucleotide sequence alignment revealed that 16S rDNA of both phytoplasma isolates found in a Sida sp. (GenBank Accession No. HQ230579) shared 99.9% sequence similarity with 16S rDNA from hibiscus witches'-broom phytoplasma (HibWB) (GenBank Accession No. AF147708). HibWB is the representative of the 16SrXV group and it was proposed as a putative species nominated “Candidatus Phytoplasma brasiliense” (2). The disease is frequently observed in hibiscus plants used as ornamentals in the states of São Paulo (4) and Rio de Janeiro (2). “Ca. Phytoplasma brasiliense” has only been reported in Brazil to be infecting hibiscus (2,4) and periwinkle (Catharanthus roseus) (3). The presence of a phytoplasma belonging to group 16SrXV in a Sida sp. expands its natural host range. The role of this weed as a potential source of inoculum for crops should be investigated. References: (1) I. M. Lee et al. Int. J. Syst. Bacteriol. 48:1153, 1998. (2) H. G. Montano et al. Int. J. Syst. Evol. Microbiol. 51:1109, 2001. (3) H. G. Montano et al. Plant Dis. 85:1209, 2001. (4) E. G. Silva et al. Summa Phytopathol. 35:234, 2009.


Plant Disease ◽  
2013 ◽  
Vol 97 (11) ◽  
pp. 1504-1504 ◽  
Author(s):  
N. Naderali ◽  
N. Nejat ◽  
Y. H. Tan ◽  
G. Vadamalai

The foxtail palm (Wodyetia bifurcata), an Australian native species, is an adaptable and fast-growing landscape tree. The foxtail palm is most commonly used in landscaping in Malaysia. Coconut yellow decline (CYD) is the major disease of coconut associated with 16SrXIV phytoplasma group in Malaysia (1). Symptoms consistent with CYD, such as severe chlorosis, stunting, general decline, and death were observed in foxtail palms from the state of Selangor in Malaysia, indicating putative phytoplasma infection. Symptomatic trees loses their green and vivid appearance as a decorative and landscape ornament. To determine the presence of phytoplasma, samples were collected from the fronds of 12 symptomatic and four asymptomatic palms in September 2012, and total DNA was extracted using the CTAB method (3). Phytoplasma DNA was detected in eight symptomatic palms using nested PCR with universal phytoplasma 16S rDNA primer pairs, P1/P7 followed by R16F2n/R16R2 (2). Amplicons (1.2 kb in length) were generated from symptomatic foxtail palms but not from symptomless plants. Phytoplasma 16S rDNAs were cloned using a TOPO TA cloning kit (Invitrogen). Several white colonies from rDNA PCR products amplified from one sample with R16F2n/R16R2 were sequenced. Phytoplasma 16S rDNA gene sequences from single symptomatic foxtail palms showed 99% homology with a phytoplasma that causes Bermuda grass white leaf (AF248961) and coconut yellow decline (EU636906), which are both members of the 16SrXIV ‘Candidatus Phytoplasma cynodontis’ group. The sequences also showed 99% sequence identity with the onion yellows phytoplasma, OY-M strain, (NR074811), from the ‘Candidatus Phytoplasma asteris’ 16SrI-B subgroup. Sequences were deposited in the NCBI GenBank database (Accession Nos. KC751560 and KC751561). Restriction fragment length polymorphism (RFLP) analysis was done on nested PCR products produced with the primer pair R16F2n/R16R2. Amplified products were digested separately with AluI, HhaI, RsaI, and EcoRI restriction enzymes based on manufacturer's specifications. RFLP analysis of 16S rRNA gene sequences from symptomatic plants revealed two distinct profiles belonging to groups 16SrXIV and 16SrI with majority of the 16SrXIV group. RFLP results independently corroborated the findings from DNA sequencing. Additional virtual patterns were obtained by iPhyclassifier software (4). Actual and virtual patterns yielded identical profiles, similar to the reference patterns for the 16SrXIV-A and 16SrI-B subgroups. Both the sequence and RFLP results indicated that symptoms in infected foxtail palms were associated with two distinct phytoplasma species in Malaysia. These phytoplasmas, which are members of two different taxonomic groups, were found in symptomatic palms. Our results revealed that popular evergreen foxtail palms are susceptible to and severely affected by phytoplasma. To our knowledge, this is the first report of a mixed infection of a single host, Wodyetia bifurcata, by two different phytoplasma species, Candidatus Phytoplasma cynodontis and Candidatus Phytoplasma asteris, in Malaysia. References: (1) N. Nejat et al. Plant Pathol. 58:1152, 2009. (2) N. Nejat et al. Plant Pathol. J. 9:101, 2010. (3) Y. P. Zhang et al. J. Virol. Meth. 71:45, 1998. (4) Y. Zhao et al. Int. J. Syst. Evol. Microbiol. 59:2582, 2009.


Plant Disease ◽  
2002 ◽  
Vol 86 (5) ◽  
pp. 477-484 ◽  
Author(s):  
Yusuf Abou-Jawdah ◽  
Armig Karakashian ◽  
Hana Sobh ◽  
Marta Martini ◽  
Ing-Ming Lee

An epidemic of almond witches'-broom has devastated almond production in Lebanon. Thousands of almond trees have died over the past 10 years due to the rapid spread of the disease. The symptoms, which include early flowering, stunted growth, leaf rosetting, dieback, off-season growth, proliferation of slender shoots, and witches'-brooms arising mainly from the main trunk and roots, resemble those caused by phytoplasmal infections. For the detection of the putative causal agent, nested polymerase chain reaction (PCR) was performed using universal primers (P1/P7, R16mF2/R16mR1, and R16F2n/R16R2) commonly used for the specific diagnosis of plant pathogenic phytoplasmas. Phytoplasmas were readily detected from infected trees with witches'-broom symptoms collected from three major almond growing regions in Lebanon. Restriction fragment length polymorphism (RFLP) analysis of PCR products amplified by the primer pair R16F2n/R16R2 revealed that the phytoplasma associated with infected almonds is similar to, but distinct from, members of the pigeon pea witches'-broom phytoplasma group (16SrIX). A new subgroup, 16SrIX-B, was designated. Sequencing of the amplified products of the phytoplasma 16S rRNA gene indicated that almond witches'-broom (AlmWB) phytoplasma is most closely related to members of the pigeon pea witches'-broom phytoplasma group (with sequence homology ranging from 98.4 to 99.0%). Phylogenetic analysis of 16S rDNA sequences from AlmWB phytoplasma and from representative phytoplasmas from GenBank showed that the AlmWB phytoplasma represents a distinct lineage within the pigeon pea witches'-broom subclade. The same phytoplasma appears also to infect peach and nectarine seedlings.


Plant Disease ◽  
2010 ◽  
Vol 94 (7) ◽  
pp. 916-916 ◽  
Author(s):  
S. Zunnoon-Khan ◽  
R. Michelutti ◽  
Y. Arocha-Rosete ◽  
J. Scott ◽  
W. Crosby ◽  
...  

Prunus persica (L.) Bastch (family Rosaceae) is currently represented by 83 accessions at the Canadian Clonal Genebank. Approximately 3,200 ha are devoted to peach cultivation in Canada where Ontario Province accounts for 82% of the national production. The clonal peach accessions, also located in Ontario, are monitored routinely for symptoms of phytoplasma infection, including rosette-like symptoms (3) that are characterized by new shoots with very short internodes, loss of older shoot leaves leaving only bunches of young leaves on the tips of naked shoots, and flowers that rarely set fruit. From June to August 2009, peach accessions PRU0382 and PRU0445 showed typical peach rosette symptoms, while another 14 accessions exhibited either short internodes or no symptoms. Leaf midrib samples were collected from 16 peach accessions, including 17 symptomatic (from which 8 corresponded to accession PRU0382, 6 for PRU0445, 1 for PRU0335, 1 for PRU0179, and 1 for PRU0451) and 16 asymptomatic (from which 5 corresponded to a representative of each accession PRU0382, PRU0445, PRU0335, PRU0179, and PRU0451 and 11 to other peach accessions). Total DNA was extracted (DNeasy Plant Extraction Mini Kit, QIAGEN, Valencia, CA) from 100 mg of each sample and used as a template in a nested PCR with phytoplasma universal primers R16mF2/R1 (1) and fU5/rU3 (2). Nested PCR products of the expected size (~880 bp) were obtained from all symptomatic samples (14 of 14) of accessions PRU0382 (peach-almond cv. Kando from the Czech Republic) and PRU0445 (peach cv. HW271 from Canada) only. All other plants with or without symptoms yielded no PCR products. Amplicons were purified (Wizard PCR Clean-up, Promega, Madison, WI), cloned in pGEM-T Easy Vector (Promega), and sequenced (Robarts Institute, London, Canada). The resulting 16S rDNA sequences were identical; one of each was archived in GenBank as Accession No. GU223904. BLAST analysis determined that the P. persica phytoplasma sequence shared 99% identity with 16S rDNA sequences of ‘Candidatus Phytoplasma asteris’-related strains. This relationship was also supported by restriction fragment length polymorphism analysis (RFLP) of rDNA amplicons using AluI, RsaI, and MseI endonucleases that yielded fragment profiles indicative of phytoplasmas belonging to group 16SrI (Aster Yellows), subgroup B (16SrI-B). Among phytoplasma diseases, those attributed to group 16SrI strains are most numerous and affect the widest plant host range. They include peach rosette in the United States and Europe (3) as well as diseases of various horticultural crops in Canada, including grapevine (4). To our knowledge, this is the first report of a subgroup 16SrI-B phytoplasma affecting peach in Canada. Early detection of phytoplasmas by PCR in accessions with both European and Canadian origins underscores the importance of prompt identification of infected plants for subsequent thermotherapy treatment to maintain the health of the collection and prevent further disease spread. References: (1) D. E Gundersen and I.-M. Lee. Phytopathol. Mediterr. 35:1441, 1996. (2) K. H. Lorenz et al. Phytopathology 85:771, 1995. (3) C. Marcone et al. Acta Hortic. 386:471, 1995. (4) C. Y. Olivier et al. Plant Dis. 93:669, 2009.


Plant Disease ◽  
2011 ◽  
Vol 95 (3) ◽  
pp. 360-360 ◽  
Author(s):  
A. M. Al-Subhi ◽  
N. A. Al-Saady ◽  
A. J. Khan ◽  
M. L. Deadman

Eggplant (Solanum melongena L.) belongs to the family Solanaceae and is an important vegetable cash crop grown in most parts of Oman. In February 2010, plants showing phyllody symptoms and proliferation of shoots resembling those caused by phytoplasma infection were observed at Khasab, 500 km north of Muscat. Total genomic DNA was extracted from healthy and two symptomatic plants with a modified (CTAB) buffer method (2) and analyzed by direct and nested PCR with universal phytoplasma 16S rDNA primers P1/P7 and R16F2n/ R16R2, respectively. PCR amplifications from all infected plants yielded an expected product of 1.8 kb with P1/P7 primers and a 1.2-kb fragment with nested PCR, while no products were evident with DNA from healthy plants. Restriction fragment length polymorphism (RFLP) profiles of the 1.2-kb nested PCR products of two eggplant phyllody phytoplasma and five phytoplasma control strains belonging to different groups used as positive control were generated with the restriction endonucleases RsaI, AluI, Tru9I, T-HB8I, and HpaII. The eggplant phytoplasma DNA yielded patterns similar to alfalfa witches'-broom phytoplasma (GenBank Accession No. AF438413) belonging to subgroup 16SrII-D, which has been recorded in Oman (1). The DNA sequence of the 1.8-kb direct PCR product was deposited in GenBank (Accession No. HQ423156). Sequence homology results using BLAST revealed that the eggplant phyllody phytoplasma shared >99% sequence identity with Scaevola witches'-broom phytoplasma (Accession No. AB257291.1), eggplant phyllody phytoplasma (Accession No. FN257482.1), and alfalfa witches'-broom phytoplasma (Accession No. AY169323). The RFLP and BLAST results of 16S rRNA gene sequences confirm that eggplant phyllody phytoplasma is similar to the alfalfa phytoplasma belonging to subgroup 16SrII-D. To our knowledge, this is the first report of a phytoplasma of the 16SrII-D group causing witches'-broom disease on eggplant in Oman. References: (1) A. J. Khan et al. Phytopathology 92:1038, 2002. (2) M. A. Saghai-Maroof et al. Proc. Natl. Acad. Sci. USA, 81:8014, 1984.


Plant Disease ◽  
2020 ◽  
Author(s):  
Priyam Panda ◽  
Jay Kumar Yadav ◽  
Sushil Kumar Singh ◽  
Amrita Nigam ◽  
Govind P Rao

Matthiola incana R. Br. (Fam: Brassicaceae) is an ornamental, commonly known as hoary stock has an extremely fragrant flowers, which blooms in dense clusters in a large variety of colors. During a survey of flower nurseries in March 2019 at Indian Institute of Sugarcane Research campus, Lucknow, floral virescence (MiV) symptoms (Fig. 1 A, B) were observed in M. incana pots with an incidence of over 40%. Leaf yellows symptoms were also observed on a weed Acalypha indica (AiLY) in Matthiola nursery (Fig. 1 C). Nested PCR assays were carried out to detect and identify the possible association of phytoplasmas with MiV and AiLY symptoms. Three each of symptomatic MiV and AiLY samples and two non-symptomatic samples were collected and processed for DNA extraction from the leaf midrib by CTAB method. Hishimonus phycitis (HP) (Hemiptera: Cicadellidae) leafhopper feeding on MiV symptomatic plants was also collected and DNA was extracted. The DNA of 8 symptomatic and 4 non-symptomatic plants and from the 10 leafhopper was used as a template for PCR assays. Phytoplasma specific 16Sr RNA gene specific primers (P1/P7 and 3Far/3Rev; Schneider et al. 1995; Manimekalai et al. 2010) and multilocus genes’ specific primer pairs for secA (SecAfor1/SecArev3;SecAfo5r/SecARev2; Bekele et al. 2011), secY (SecYF1(VI)/SecYR1(VI);SecYF2(VI)/SecYR1(VI); Lee et al. 2010) and rp genes (rpFIC/rp(I)R1A; rp(VI)F2/ rp(VI)R2; Martini et al. 2007) were employed as previously described. Amplified products of ~1.3kb, ~600bp, ~1.7kb and ~1.0kb of 16S rRNA, secA, secY and rp genes of phytoplasma were consistently amplified in all the MiV and AiLY samples and in the HP leafhopper. No amplifications were achieved in any of the asymptomatic plant samples. Amplified products of all the four genes of MiV, AiLY and HP isolates were purified, sequenced and submitted in GenBank. Sequence comparison and phylogeny analysis of the sequences of the four genes of MiV, AiLY and HP isolates revealed 99% - 100% sequence identity and clustering with clover proliferation phytoplasma related strains (16SrVI group)(Fig.2 A,B,C and D). The virtual RFLP analysis of 17 restriction endonucleases corresponding to the 16S rDNA sequence of MiV, AiLY and HP phytoplasma strains by pDraw program, assigned them into a novel phytoplasma subgroup strain under 16SrVI group, since its HpaII restriction profile was different to earlier classified 16SrVI subgroups but was very close to16SrVI-E subgroup (GenBank acc. no. AY270156) (Fig 3). Earlier, peanut witches’ broom (16SrII-A) phytoplasma was identified associated with M. incana from Italy (Davino et al. 2007). However, the association of clover proliferation phytoplasma (16SrVI) related strain associated with virescence symptom of M. incana is the first report in world. The weed (A. indica) and HP leafhopper were also reported as additional hosts of 16SrVI subgroup related new strain in India, which needs further investigation. The report of a new host and new subgroup of clover proliferation phytoplasma related strain in India is having an epidemiological significance and warrants attention.


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2761-2765 ◽  
Author(s):  
Daniela Flôres ◽  
Ana Paula de Oliveira Amaral Mello ◽  
Thays Benites Camargo Pereira ◽  
Jorge Alberto Marques Rezende ◽  
Ivan Paulo Bedendo

Erigeron sp. plants showing symptoms of witches' broom and stunting were found near orchards of passion fruit in São Paulo state, Brazil. These symptoms were indicative of infection by phytoplasmas. Thus, the aim of this study was to detect and identify possible phytoplasmas associated with diseased plants. Total DNA was extracted from symptomatic and asymptomatic plants and used in nested PCR conducted with the primer pairs P1/Tint and R16F2n/16R2. Amplification of genomic fragments of 1.2 kb from the 16S rRNA gene confirmed the presence of phytoplasma in all symptomatic samples. The sequence identity scores between the 16S rRNA gene of the phytoplasma strain identified in the current study and those of previously reported ‘Candidatus Phytoplasma fraxini’-related strains ranged from 98 % to 99 % indicating the phytoplasma to be a strain affiliated with ‘Candidatus Phytoplasma fraxini’. The results from a phylogenetic analysis and virtual RFLP analysis of the 16S rRNA gene sequence with 17 restriction enzymes revealed that the phytoplasma strain belongs to the ash yellows phytoplasma group (16SrVII); the similarity coefficient of RFLP patterns further suggested that the phytoplasma represents a novel subgroup, designated 16SrVII-D. The representative of this new subgroup was named EboWB phytoplasma (Erigeron bonariensis Witches' Broom).


2001 ◽  
Vol 2 (1) ◽  
pp. 111-116 ◽  
Author(s):  
Wolfgang Kraatz ◽  
Ulf Thunberg ◽  
Bertil Pettersson ◽  
Claes Fellström

AbstractDNA was extracted from colonic biopsies of 33 patients with and three without evidence of intestinal spirochetosis (IS) in the large bowel. The biopsies were subjected to PCR. A pair of primers, generating a 207 bp fragment, were designed to detect specifically the 16S rDNA gene ofBrachyspira. PCR products of the expected size were obtained from 33 samples with histologic evidence of IS. The PCR amplicons were used for sequencing. The sequences obtained were aligned to the corresponding 16S rRNA sequences of five type strains ofBrachyspira. The sequences of 23 PCR products were 99–100% identical with the correspond-ingB.aalborgitype strain sequence. Two cases showed 99–100% sequence similarity with the type strain ofB.pilosicoliP43/6/78. Six cases could not be referred to any of the known species ofBrachyspira. Two PCR products gave incomplete sequences.


Sign in / Sign up

Export Citation Format

Share Document