Identification by computer-simulated RFLP of phytoplasmas associated with eggplant giant calyx representative of two subgroups, a lineage of 16SrIII-J and the new subgroup 16SrIII-U

2011 ◽  
Vol 61 (6) ◽  
pp. 1454-1461 ◽  
Author(s):  
Ana Paula de Oliveira Amaral Mello ◽  
Bárbara Eckstein ◽  
Daniela Flores ◽  
Patrícia Fabretti Kreyci ◽  
Ivan Paulo Bedendo

Symptoms resembling giant calyx, a graft-transmissible disease, were observed on 1–5 % of eggplant (aubergine; Solanum melongena L.) plants in production fields in Sao Paulo state, Brazil. Phytoplasmas were detected in 12 of 12 samples from symptomatic plants that were analysed by a nested PCR assay employing 16S rRNA gene primers R16mF2/R16mR1 followed by R16F2n/R16R2. RFLP analysis of the resulting rRNA gene products (1.2 kb) indicated that all plants contained similar phytoplasmas, each closely resembling strains previously classified as members of RFLP group 16SrIII (X-disease group). Virtual RFLP and phylogenetic analyses of sequences derived from PCR products identified phytoplasmas infecting eggplant crops grown in Piracicaba as a lineage of the subgroup 16SrIII-J, whereas phytoplasmas detected in plants grown in Bragança Paulista were tentatively classified as members of a novel subgroup 16SrIII-U. These findings confirm eggplant as a new host of group 16SrIII-J phytoplasmas and extend the known diversity of strains belonging to this group in Brazil.

Plant Disease ◽  
2013 ◽  
Vol 97 (3) ◽  
pp. 419-419 ◽  
Author(s):  
M. C. Canale ◽  
I. P. Bedendo

Cauliflower stunt, caused by a phytoplasma of the group 16SrIII-J, was reported in the beginning of 2012 and has occurred with high incidences of infected plants (up to 90%) in crops located in the state of São Paulo in the southeast region of Brazil (3). Diseased plants exhibit general stunting, malformation of inflorescence, reddening leaves, and vessel necrosis (3). Further investigations with plants displaying identical symptoms collected in Nova Bassano, state of Rio Grande do Sul, Brazilian south region, have revealed the presence of a phytoplasma distinct from 16SrIII-J subgroup. Four symptomatic plus four asymptomatic samples were assayed from a field, and the presence of phytoplasma was evidenced by nested PCR assays performed with primers P1/Tint followed by R16F2n/16R2 in three affected plants, which amplified genomic fragments of 1.2 kb from the 16S rRNA gene. No amplification occurred in non-affected samples. Nested PCR products analyzed by conventional RFLP (2) using the enzymes AluI, RsaI, KpnI, HpaII, MseI, HhaI, MboI, and BstUI pointed to the presence of a phytoplasma belonging to group 16SrXV-A in all three phytoplasma-positive samples. Virtual RFLP analysis based on restriction patterns, derived from in silico digestion with 17 endonucleases (4), confirmed the previous results obtained from those samples by conventional RFLP. The 16S rDNA sequences of this phytoplasma identified in cauliflower (GenBank Accession No. JN818845) shared 99% sequence similarity with the reference phytoplasma for subgroup 16SrXV-A (Hibiscus witches'-broom phytoplasma, AF147708), designated ‘Candidatus Phytoplasma brasiliense.’ Analysis of putative restriction sites showed excellent identity between the phytoplasma studied here and the reference phytoplasma. In addition, the arrangement of branches of a phylogenetic tree constructed with phytoplasmas representing diverse 16Sr groups and subgroups supported that the phytoplasma found in cauliflower is closed related to the representative of the subgroup 16SrXV-A. Association of distinct phytoplasmas with the same kind of disease is not rare and the present pathosystem constitutes a new example. Members of this subgroup have been described almost exclusively in Brazil and previously reported in Sida sp., periwinkle, and hibiscus (1). In some European countries, as well as in the United States and Canada, phytoplasmas belonging to group 16SrI has been associated with this type of disease, which has been reported for various species of the genus Brassica, as published in previous works (3). However, a representative of the group 16SrVI was described in infected plants in Iran (3). Although the 16SrIII-J phytoplasma is currently the most important agent of cauliflower stunt in Brazil, and members of 16SrI are prevalent in other countries, this study revealed that a 16Sr XV-A phytoplasma may be also associated with this important disease of brassicas. Besides, the findings here reported expand the natural host range, including cauliflower as new host for phytoplasmas affiliated with 16SrXV-A. References: (1) B. Eckstein et al. Plant Dis. 95:363, 2009. (2) I. M. Lee et al. Int. J. Syst. Bacteriol. 48:1153, 1998. (3) M. C. C. Rappussi et al. Eur. J. Plant. Pathol. 133:829, 2012. (4) Wei et al. Int. J. Syst. Evol. Microbiol. 57:1855, 2007.


3 Biotech ◽  
2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Madem Gurivi Reddy ◽  
Virendra Kumar Baranwal ◽  
Doddachowdappa Sagar ◽  
Govind Pratap Rao

AbstractAn investigation was carried out to identify and characterize the phytoplasma and viruses associated with the chickpea varieties showing severe stunting, leaf reddening, yellowing and phyllody symptoms during the summer season of 2018–2019 and 2019–2020 in eight states of India. The average disease incidence was recorded from 3 to 32% in different states. The presence of chickpea chlorotic dwarf virus (CpCDV) was confirmed in thirty-seven chickpea samples by amplification of CpCDV coat protein gene and sequence comparison analysis. No record of association of luteovirus, polerovirus and cucumovirus could be detected in any of the symptomatic chickpea samples by RT-PCR assay. Brassica nigra, B. juncea, Lens culinaris, two weeds (Heteropogan contartus, Aeschynomene virginica) and one leafhopper (Amarasca biguttula) were identified as new putative hosts for CpCDV. Association of peanut witches’ broom phytoplasma was confirmed in twenty-eight chickpea samples, Sesamum indicum, five weeds hosts and two leafhopper species (Exitianus indicus, Empoasca motti) using nested PCR assays with primer pairs P1/P7 and R16F2n/R16Rn. The results of phytoplasma association in plants and leafhopper samples were further validated by using five multilocus genes (secA, rp, imp, tuf and secY) specific primers. Sequence comparison, phylogenetic and virtual RFLP analysis of 16S rRNA gene and five multilocus genes confirmed the identity of association of 16SrII-C and 16SrII-D subgroups of phytoplasmas strain with chickpea samples collected from Andhra Pradesh (AP), Telangana, Karnataka, Madhya Pradesh, Uttar Pradesh and New Delhi. Mixed infection of phytoplasma (16SrII-D) and CpCDV was also detected in symptomatic chickpea samples from AP and Telangana. The reports of association of 16SrII-C subgroup phytoplasma in chickpea and 16SrII-D subgroup phytoplasma in C. sparsiflora and C. roseus are the new host records in world and from India, respectively.


Plant Disease ◽  
2011 ◽  
Vol 95 (3) ◽  
pp. 360-360 ◽  
Author(s):  
A. M. Al-Subhi ◽  
N. A. Al-Saady ◽  
A. J. Khan ◽  
M. L. Deadman

Eggplant (Solanum melongena L.) belongs to the family Solanaceae and is an important vegetable cash crop grown in most parts of Oman. In February 2010, plants showing phyllody symptoms and proliferation of shoots resembling those caused by phytoplasma infection were observed at Khasab, 500 km north of Muscat. Total genomic DNA was extracted from healthy and two symptomatic plants with a modified (CTAB) buffer method (2) and analyzed by direct and nested PCR with universal phytoplasma 16S rDNA primers P1/P7 and R16F2n/ R16R2, respectively. PCR amplifications from all infected plants yielded an expected product of 1.8 kb with P1/P7 primers and a 1.2-kb fragment with nested PCR, while no products were evident with DNA from healthy plants. Restriction fragment length polymorphism (RFLP) profiles of the 1.2-kb nested PCR products of two eggplant phyllody phytoplasma and five phytoplasma control strains belonging to different groups used as positive control were generated with the restriction endonucleases RsaI, AluI, Tru9I, T-HB8I, and HpaII. The eggplant phytoplasma DNA yielded patterns similar to alfalfa witches'-broom phytoplasma (GenBank Accession No. AF438413) belonging to subgroup 16SrII-D, which has been recorded in Oman (1). The DNA sequence of the 1.8-kb direct PCR product was deposited in GenBank (Accession No. HQ423156). Sequence homology results using BLAST revealed that the eggplant phyllody phytoplasma shared >99% sequence identity with Scaevola witches'-broom phytoplasma (Accession No. AB257291.1), eggplant phyllody phytoplasma (Accession No. FN257482.1), and alfalfa witches'-broom phytoplasma (Accession No. AY169323). The RFLP and BLAST results of 16S rRNA gene sequences confirm that eggplant phyllody phytoplasma is similar to the alfalfa phytoplasma belonging to subgroup 16SrII-D. To our knowledge, this is the first report of a phytoplasma of the 16SrII-D group causing witches'-broom disease on eggplant in Oman. References: (1) A. J. Khan et al. Phytopathology 92:1038, 2002. (2) M. A. Saghai-Maroof et al. Proc. Natl. Acad. Sci. USA, 81:8014, 1984.


Plant Disease ◽  
2020 ◽  
Author(s):  
Priyam Panda ◽  
Jay Kumar Yadav ◽  
Sushil Kumar Singh ◽  
Amrita Nigam ◽  
Govind P Rao

Matthiola incana R. Br. (Fam: Brassicaceae) is an ornamental, commonly known as hoary stock has an extremely fragrant flowers, which blooms in dense clusters in a large variety of colors. During a survey of flower nurseries in March 2019 at Indian Institute of Sugarcane Research campus, Lucknow, floral virescence (MiV) symptoms (Fig. 1 A, B) were observed in M. incana pots with an incidence of over 40%. Leaf yellows symptoms were also observed on a weed Acalypha indica (AiLY) in Matthiola nursery (Fig. 1 C). Nested PCR assays were carried out to detect and identify the possible association of phytoplasmas with MiV and AiLY symptoms. Three each of symptomatic MiV and AiLY samples and two non-symptomatic samples were collected and processed for DNA extraction from the leaf midrib by CTAB method. Hishimonus phycitis (HP) (Hemiptera: Cicadellidae) leafhopper feeding on MiV symptomatic plants was also collected and DNA was extracted. The DNA of 8 symptomatic and 4 non-symptomatic plants and from the 10 leafhopper was used as a template for PCR assays. Phytoplasma specific 16Sr RNA gene specific primers (P1/P7 and 3Far/3Rev; Schneider et al. 1995; Manimekalai et al. 2010) and multilocus genes’ specific primer pairs for secA (SecAfor1/SecArev3;SecAfo5r/SecARev2; Bekele et al. 2011), secY (SecYF1(VI)/SecYR1(VI);SecYF2(VI)/SecYR1(VI); Lee et al. 2010) and rp genes (rpFIC/rp(I)R1A; rp(VI)F2/ rp(VI)R2; Martini et al. 2007) were employed as previously described. Amplified products of ~1.3kb, ~600bp, ~1.7kb and ~1.0kb of 16S rRNA, secA, secY and rp genes of phytoplasma were consistently amplified in all the MiV and AiLY samples and in the HP leafhopper. No amplifications were achieved in any of the asymptomatic plant samples. Amplified products of all the four genes of MiV, AiLY and HP isolates were purified, sequenced and submitted in GenBank. Sequence comparison and phylogeny analysis of the sequences of the four genes of MiV, AiLY and HP isolates revealed 99% - 100% sequence identity and clustering with clover proliferation phytoplasma related strains (16SrVI group)(Fig.2 A,B,C and D). The virtual RFLP analysis of 17 restriction endonucleases corresponding to the 16S rDNA sequence of MiV, AiLY and HP phytoplasma strains by pDraw program, assigned them into a novel phytoplasma subgroup strain under 16SrVI group, since its HpaII restriction profile was different to earlier classified 16SrVI subgroups but was very close to16SrVI-E subgroup (GenBank acc. no. AY270156) (Fig 3). Earlier, peanut witches’ broom (16SrII-A) phytoplasma was identified associated with M. incana from Italy (Davino et al. 2007). However, the association of clover proliferation phytoplasma (16SrVI) related strain associated with virescence symptom of M. incana is the first report in world. The weed (A. indica) and HP leafhopper were also reported as additional hosts of 16SrVI subgroup related new strain in India, which needs further investigation. The report of a new host and new subgroup of clover proliferation phytoplasma related strain in India is having an epidemiological significance and warrants attention.


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2761-2765 ◽  
Author(s):  
Daniela Flôres ◽  
Ana Paula de Oliveira Amaral Mello ◽  
Thays Benites Camargo Pereira ◽  
Jorge Alberto Marques Rezende ◽  
Ivan Paulo Bedendo

Erigeron sp. plants showing symptoms of witches' broom and stunting were found near orchards of passion fruit in São Paulo state, Brazil. These symptoms were indicative of infection by phytoplasmas. Thus, the aim of this study was to detect and identify possible phytoplasmas associated with diseased plants. Total DNA was extracted from symptomatic and asymptomatic plants and used in nested PCR conducted with the primer pairs P1/Tint and R16F2n/16R2. Amplification of genomic fragments of 1.2 kb from the 16S rRNA gene confirmed the presence of phytoplasma in all symptomatic samples. The sequence identity scores between the 16S rRNA gene of the phytoplasma strain identified in the current study and those of previously reported ‘Candidatus Phytoplasma fraxini’-related strains ranged from 98 % to 99 % indicating the phytoplasma to be a strain affiliated with ‘Candidatus Phytoplasma fraxini’. The results from a phylogenetic analysis and virtual RFLP analysis of the 16S rRNA gene sequence with 17 restriction enzymes revealed that the phytoplasma strain belongs to the ash yellows phytoplasma group (16SrVII); the similarity coefficient of RFLP patterns further suggested that the phytoplasma represents a novel subgroup, designated 16SrVII-D. The representative of this new subgroup was named EboWB phytoplasma (Erigeron bonariensis Witches' Broom).


2003 ◽  
Vol 52 (4) ◽  
pp. 309-313 ◽  
Author(s):  
M.P. Riggio ◽  
A. Lennon

Peptostreptococcus magnus is the most pathogenic and one of the most common Gram-positive anaerobic cocci found in human clinical specimens. The organism has been isolated in pure culture from a range of serious infections, including meningitis and endocarditis. However, isolation of Peptostreptococcus magnus from the oral cavity has rarely been attempted. Identification of Peptostreptococcus magnus in clinical specimens is reliant upon microbiological culture and biochemical methods, which often give ambiguous results. The aim of this study was to develop a PCR assay for the specific detection of Peptostreptococcus magnus in oral clinical specimens. PCR primers specific for Peptostreptococcus magnus DNA were derived by comparison of 16S rRNA gene sequences and selection of primers that demonstrated specificity at their 3′ ends for Peptostreptococcus magnus. PCR positivity for Peptostreptococcus magnus DNA was indicated by the amplification of a 553 bp product. The PCR assay was then used to attempt detection of Peptostreptococcus magnus DNA in subgingival plaque samples from adult periodontitis patients and pus aspirates from subjects with acute dento-alveolar abscesses. The PCR assay was demonstrated to be highly specific for Peptostreptococcus magnus DNA, since no PCR products were obtained when genomic DNA from a wide range of other oral bacteria, including closely related Peptostreptococcus species, was used in the PCR assay. Confirmation of specific amplification of Peptostreptococcus magnus DNA was obtained by digestion of PCR products with the restriction endonuclease RsaI, which gives a unique restriction profile for Peptostreptococcus magnus. Of the 33 subgingival plaque samples analysed, 2 (6 %) were positive for Peptostreptococcus magnus DNA. None of the 60 pus aspirates analysed was positive for Peptostreptococcus magnus DNA. It is concluded that Peptostreptococcus magnus is not a major pathogen in adult periodontitis or dento-alveolar abscesses. The PCR assay provides a more rapid, specific and sensitive alternative to conventional methods for identification of Peptostreptococcus magnus in clinical specimens.


2012 ◽  
Vol 78 (8) ◽  
pp. 2758-2767 ◽  
Author(s):  
Christine Schauer ◽  
Claire L. Thompson ◽  
Andreas Brune

ABSTRACTTermites and cockroaches are closely related, with molecular phylogenetic analyses even placing termites within the radiation of cockroaches. The intestinal tract of wood-feeding termites harbors a remarkably diverse microbial community that is essential for the digestion of lignocellulose. However, surprisingly little is known about the gut microbiota of their closest relatives, the omnivorous cockroaches. Here, we present a combined characterization of physiological parameters, metabolic activities, and bacterial microbiota in the gut ofShelfordella lateralis, a representative of the cockroach family Blattidae, the sister group of termites. We compared the bacterial communities within each gut compartment using terminal-restriction fragment length polymorphism (T-RFLP) analysis and made a 16S rRNA gene clone library of the microbiota in the colon—the dilated part of the hindgut with the highest density and diversity of bacteria. The colonic community was dominated by members of theBacteroidetes,Firmicutes(mainlyClostridia), and someDeltaproteobacteria. SpirochaetesandFibrobacteres, which are abundant members of termite gut communities, were conspicuously absent. Nevertheless, detailed phylogenetic analysis revealed that many of the clones from the cockroach colon clustered with sequences previously obtained from the termite gut, which indicated that the composition of the bacterial community reflects at least in part the phylogeny of the host.


2021 ◽  
Vol 58 (No. 1) ◽  
pp. 31-39
Author(s):  
Mustafa Usta ◽  
Abdullah Güller ◽  
Hikmet Murat Sipahioglu

Phytoplasma-like symptoms of leaf yellowing and calyx malformation were observed in eggplant (Solanum melongena L.), upward leaves and fruit malformation in pepper (Capsicum annuum L.), and aerial tuber formation in potato (S. tuberosum L.) during the survey performed in the late season (August to September) of 2015 and 2016 in Van province (Turkey). A total of 100 samples were tested by nested-PCR using universal primer pairs to assess the sanitary status of the solanaceous crops and to characterise the phytoplasma isolates. Among them, seven samples resulted in a 1.25 kb DNA fragment, and five (two eggplants, two peppers, and one potato) were molecularly characterised (Accession No.: KY579357, KT595210, MF564267, MF564266, and MH683601). BLAST and the virtual restriction fragment length polymorphism (RFLP) analysis of 16S rRNA genes revealed the presence of two distinct phytoplasma infections in solanaceous crops: ‘Candidatus Phytoplasma trifolii’ a member of the clover proliferation group (16SrVI) and subgroup A and ‘Candidatus P. solani’ a member of the stolbur group (16SrXII) and subgroup A. The virtual RFLP analysis and calculated coefficients of RFLP pattern similarities further revealed a remarkable genetic diversity among the ‘Candidatus P. solani’ isolates infecting pepper (similarity coefficient of 0.90) and eggplant (similarity coefficients of 0.98 and 1.00) at the same geographical area. This is the first report of the natural occurrence of ‘Candidadtus P. trifolii’ in potato from the Eastern Anatolia region, Turkey.


Plant Disease ◽  
2011 ◽  
Vol 95 (3) ◽  
pp. 363-363 ◽  
Author(s):  
B. Eckstein ◽  
J. C. Barbosa ◽  
J. A. M. Rezende ◽  
I. P. Bedendo

Sida is a genus of flowering herbs in the family Malvaceae, which includes several species that are weeds in Brazil. Plants of a Sida sp. exhibiting symptoms characterized by stunting, chlorosis, small leaves, and witches'-broom, indicative of infection by phytoplasmas, were found in a field previously cultivated with tomato, located in the region of Campinas, State of São Paulo, in December 2008. To demonstrate the presence of phytoplasmas in diseased tissues, DNA was extracted from shoots and leaves from three symptomatic and eight asymptomatic plants. Nested PCR was performed using primers P1/Tint followed by primer pair R16F2n/R16R2 (1). DNA fragments of 1.2 kb, corresponding to 16S rDNA, were amplified only for DNA from two symptomatic samples. Phytoplasma identification was initially carried out by restriction fragment length polymorphism (RFLP) analysis through digesting the PCR products with the restriction enzymes AluI, HhaI, HaeIII, HpaII, MseI, and RsaI. The two phytoplasma isolates found to be infecting a Sida sp. showed identical RFLP patterns, which were indistinguishable from the phytoplasma previously reported in association with hibiscus (Hibiscus rosa-sinensis) witches'-broom in Brazil (2). Nucleotide sequence alignment revealed that 16S rDNA of both phytoplasma isolates found in a Sida sp. (GenBank Accession No. HQ230579) shared 99.9% sequence similarity with 16S rDNA from hibiscus witches'-broom phytoplasma (HibWB) (GenBank Accession No. AF147708). HibWB is the representative of the 16SrXV group and it was proposed as a putative species nominated “Candidatus Phytoplasma brasiliense” (2). The disease is frequently observed in hibiscus plants used as ornamentals in the states of São Paulo (4) and Rio de Janeiro (2). “Ca. Phytoplasma brasiliense” has only been reported in Brazil to be infecting hibiscus (2,4) and periwinkle (Catharanthus roseus) (3). The presence of a phytoplasma belonging to group 16SrXV in a Sida sp. expands its natural host range. The role of this weed as a potential source of inoculum for crops should be investigated. References: (1) I. M. Lee et al. Int. J. Syst. Bacteriol. 48:1153, 1998. (2) H. G. Montano et al. Int. J. Syst. Evol. Microbiol. 51:1109, 2001. (3) H. G. Montano et al. Plant Dis. 85:1209, 2001. (4) E. G. Silva et al. Summa Phytopathol. 35:234, 2009.


2019 ◽  
Vol 72 (7) ◽  
pp. 487-492 ◽  
Author(s):  
Samson S Y Wong ◽  
Rosana W S Poon ◽  
Kelvin K W To ◽  
Jasper F W Chan ◽  
Gang Lu ◽  
...  

AimsHelminth infections are becoming uncommon in high-income countries and laboratory staff may lose expertise in their morphological identification, especially in histological sections where speciation of helminths is challenging. Commercially available molecular diagnostic panels for faecal specimens only offer tests for protozoa but not helminths. We aim to improve the identification accuracy of helminths using a multiplex PCR assay.MethodsWe designed three pairs of PCR primers and probes targeting multicopy genes for a multiplex single-tube real-time PCR assay which covers 16 trematode (28S rRNA gene), 24 cestode (cox1 gene) and 33 nematode (cox1 gene) species. Helminths (n=27) from faecal samples (n=10), fresh parasites (n=11), formalin-fixed specimens (n=4), cerebrospinal fluid (n=1) and bile (n=1) were examined morphologically and tested by PCR. Fifty stool samples negative for parasites by microscopy were also tested.ResultsThe PCR assay correctly identified the genera of all tested helminths. Agarose gel electrophoresis and sequencing of the purified PCR amplicons confirmed that the PCR products were of correct sizes with 100% correlation with the respective species. Sequencing of the cox1 gene failed to identify Capillaria spp. in one sample owing to the lack of corresponding sequences in GenBank. PCR and sequencing of the nematode 18S rRNA gene using consensus primers showed 100% homology with Capillaria spp. sequence. No positive PCR products were found in the negative stool samples.ConclusionsThe highly specific test correctly identified all helminths in our cohort. It is a useful adjunct to helminth identification in difficult situations such as histological sections.


Sign in / Sign up

Export Citation Format

Share Document