scholarly journals Molecular characterization of chickpea chlorotic dwarf virus and peanut witches’ broom phytoplasma associated with chickpea stunt disease and identification of new host crops and leafhopper vectors in India

3 Biotech ◽  
2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Madem Gurivi Reddy ◽  
Virendra Kumar Baranwal ◽  
Doddachowdappa Sagar ◽  
Govind Pratap Rao

AbstractAn investigation was carried out to identify and characterize the phytoplasma and viruses associated with the chickpea varieties showing severe stunting, leaf reddening, yellowing and phyllody symptoms during the summer season of 2018–2019 and 2019–2020 in eight states of India. The average disease incidence was recorded from 3 to 32% in different states. The presence of chickpea chlorotic dwarf virus (CpCDV) was confirmed in thirty-seven chickpea samples by amplification of CpCDV coat protein gene and sequence comparison analysis. No record of association of luteovirus, polerovirus and cucumovirus could be detected in any of the symptomatic chickpea samples by RT-PCR assay. Brassica nigra, B. juncea, Lens culinaris, two weeds (Heteropogan contartus, Aeschynomene virginica) and one leafhopper (Amarasca biguttula) were identified as new putative hosts for CpCDV. Association of peanut witches’ broom phytoplasma was confirmed in twenty-eight chickpea samples, Sesamum indicum, five weeds hosts and two leafhopper species (Exitianus indicus, Empoasca motti) using nested PCR assays with primer pairs P1/P7 and R16F2n/R16Rn. The results of phytoplasma association in plants and leafhopper samples were further validated by using five multilocus genes (secA, rp, imp, tuf and secY) specific primers. Sequence comparison, phylogenetic and virtual RFLP analysis of 16S rRNA gene and five multilocus genes confirmed the identity of association of 16SrII-C and 16SrII-D subgroups of phytoplasmas strain with chickpea samples collected from Andhra Pradesh (AP), Telangana, Karnataka, Madhya Pradesh, Uttar Pradesh and New Delhi. Mixed infection of phytoplasma (16SrII-D) and CpCDV was also detected in symptomatic chickpea samples from AP and Telangana. The reports of association of 16SrII-C subgroup phytoplasma in chickpea and 16SrII-D subgroup phytoplasma in C. sparsiflora and C. roseus are the new host records in world and from India, respectively.

Plant Disease ◽  
2020 ◽  
Author(s):  
Priyam Panda ◽  
Jay Kumar Yadav ◽  
Sushil Kumar Singh ◽  
Amrita Nigam ◽  
Govind P Rao

Matthiola incana R. Br. (Fam: Brassicaceae) is an ornamental, commonly known as hoary stock has an extremely fragrant flowers, which blooms in dense clusters in a large variety of colors. During a survey of flower nurseries in March 2019 at Indian Institute of Sugarcane Research campus, Lucknow, floral virescence (MiV) symptoms (Fig. 1 A, B) were observed in M. incana pots with an incidence of over 40%. Leaf yellows symptoms were also observed on a weed Acalypha indica (AiLY) in Matthiola nursery (Fig. 1 C). Nested PCR assays were carried out to detect and identify the possible association of phytoplasmas with MiV and AiLY symptoms. Three each of symptomatic MiV and AiLY samples and two non-symptomatic samples were collected and processed for DNA extraction from the leaf midrib by CTAB method. Hishimonus phycitis (HP) (Hemiptera: Cicadellidae) leafhopper feeding on MiV symptomatic plants was also collected and DNA was extracted. The DNA of 8 symptomatic and 4 non-symptomatic plants and from the 10 leafhopper was used as a template for PCR assays. Phytoplasma specific 16Sr RNA gene specific primers (P1/P7 and 3Far/3Rev; Schneider et al. 1995; Manimekalai et al. 2010) and multilocus genes’ specific primer pairs for secA (SecAfor1/SecArev3;SecAfo5r/SecARev2; Bekele et al. 2011), secY (SecYF1(VI)/SecYR1(VI);SecYF2(VI)/SecYR1(VI); Lee et al. 2010) and rp genes (rpFIC/rp(I)R1A; rp(VI)F2/ rp(VI)R2; Martini et al. 2007) were employed as previously described. Amplified products of ~1.3kb, ~600bp, ~1.7kb and ~1.0kb of 16S rRNA, secA, secY and rp genes of phytoplasma were consistently amplified in all the MiV and AiLY samples and in the HP leafhopper. No amplifications were achieved in any of the asymptomatic plant samples. Amplified products of all the four genes of MiV, AiLY and HP isolates were purified, sequenced and submitted in GenBank. Sequence comparison and phylogeny analysis of the sequences of the four genes of MiV, AiLY and HP isolates revealed 99% - 100% sequence identity and clustering with clover proliferation phytoplasma related strains (16SrVI group)(Fig.2 A,B,C and D). The virtual RFLP analysis of 17 restriction endonucleases corresponding to the 16S rDNA sequence of MiV, AiLY and HP phytoplasma strains by pDraw program, assigned them into a novel phytoplasma subgroup strain under 16SrVI group, since its HpaII restriction profile was different to earlier classified 16SrVI subgroups but was very close to16SrVI-E subgroup (GenBank acc. no. AY270156) (Fig 3). Earlier, peanut witches’ broom (16SrII-A) phytoplasma was identified associated with M. incana from Italy (Davino et al. 2007). However, the association of clover proliferation phytoplasma (16SrVI) related strain associated with virescence symptom of M. incana is the first report in world. The weed (A. indica) and HP leafhopper were also reported as additional hosts of 16SrVI subgroup related new strain in India, which needs further investigation. The report of a new host and new subgroup of clover proliferation phytoplasma related strain in India is having an epidemiological significance and warrants attention.


Plant Disease ◽  
2013 ◽  
Vol 97 (3) ◽  
pp. 419-419 ◽  
Author(s):  
M. C. Canale ◽  
I. P. Bedendo

Cauliflower stunt, caused by a phytoplasma of the group 16SrIII-J, was reported in the beginning of 2012 and has occurred with high incidences of infected plants (up to 90%) in crops located in the state of São Paulo in the southeast region of Brazil (3). Diseased plants exhibit general stunting, malformation of inflorescence, reddening leaves, and vessel necrosis (3). Further investigations with plants displaying identical symptoms collected in Nova Bassano, state of Rio Grande do Sul, Brazilian south region, have revealed the presence of a phytoplasma distinct from 16SrIII-J subgroup. Four symptomatic plus four asymptomatic samples were assayed from a field, and the presence of phytoplasma was evidenced by nested PCR assays performed with primers P1/Tint followed by R16F2n/16R2 in three affected plants, which amplified genomic fragments of 1.2 kb from the 16S rRNA gene. No amplification occurred in non-affected samples. Nested PCR products analyzed by conventional RFLP (2) using the enzymes AluI, RsaI, KpnI, HpaII, MseI, HhaI, MboI, and BstUI pointed to the presence of a phytoplasma belonging to group 16SrXV-A in all three phytoplasma-positive samples. Virtual RFLP analysis based on restriction patterns, derived from in silico digestion with 17 endonucleases (4), confirmed the previous results obtained from those samples by conventional RFLP. The 16S rDNA sequences of this phytoplasma identified in cauliflower (GenBank Accession No. JN818845) shared 99% sequence similarity with the reference phytoplasma for subgroup 16SrXV-A (Hibiscus witches'-broom phytoplasma, AF147708), designated ‘Candidatus Phytoplasma brasiliense.’ Analysis of putative restriction sites showed excellent identity between the phytoplasma studied here and the reference phytoplasma. In addition, the arrangement of branches of a phylogenetic tree constructed with phytoplasmas representing diverse 16Sr groups and subgroups supported that the phytoplasma found in cauliflower is closed related to the representative of the subgroup 16SrXV-A. Association of distinct phytoplasmas with the same kind of disease is not rare and the present pathosystem constitutes a new example. Members of this subgroup have been described almost exclusively in Brazil and previously reported in Sida sp., periwinkle, and hibiscus (1). In some European countries, as well as in the United States and Canada, phytoplasmas belonging to group 16SrI has been associated with this type of disease, which has been reported for various species of the genus Brassica, as published in previous works (3). However, a representative of the group 16SrVI was described in infected plants in Iran (3). Although the 16SrIII-J phytoplasma is currently the most important agent of cauliflower stunt in Brazil, and members of 16SrI are prevalent in other countries, this study revealed that a 16Sr XV-A phytoplasma may be also associated with this important disease of brassicas. Besides, the findings here reported expand the natural host range, including cauliflower as new host for phytoplasmas affiliated with 16SrXV-A. References: (1) B. Eckstein et al. Plant Dis. 95:363, 2009. (2) I. M. Lee et al. Int. J. Syst. Bacteriol. 48:1153, 1998. (3) M. C. C. Rappussi et al. Eur. J. Plant. Pathol. 133:829, 2012. (4) Wei et al. Int. J. Syst. Evol. Microbiol. 57:1855, 2007.


2011 ◽  
Vol 61 (6) ◽  
pp. 1454-1461 ◽  
Author(s):  
Ana Paula de Oliveira Amaral Mello ◽  
Bárbara Eckstein ◽  
Daniela Flores ◽  
Patrícia Fabretti Kreyci ◽  
Ivan Paulo Bedendo

Symptoms resembling giant calyx, a graft-transmissible disease, were observed on 1–5 % of eggplant (aubergine; Solanum melongena L.) plants in production fields in Sao Paulo state, Brazil. Phytoplasmas were detected in 12 of 12 samples from symptomatic plants that were analysed by a nested PCR assay employing 16S rRNA gene primers R16mF2/R16mR1 followed by R16F2n/R16R2. RFLP analysis of the resulting rRNA gene products (1.2 kb) indicated that all plants contained similar phytoplasmas, each closely resembling strains previously classified as members of RFLP group 16SrIII (X-disease group). Virtual RFLP and phylogenetic analyses of sequences derived from PCR products identified phytoplasmas infecting eggplant crops grown in Piracicaba as a lineage of the subgroup 16SrIII-J, whereas phytoplasmas detected in plants grown in Bragança Paulista were tentatively classified as members of a novel subgroup 16SrIII-U. These findings confirm eggplant as a new host of group 16SrIII-J phytoplasmas and extend the known diversity of strains belonging to this group in Brazil.


3 Biotech ◽  
2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Priyam Panda ◽  
Amrita Nigam ◽  
G. P. Rao

AbstractRose balsam (Impatiens balsamina) is an important ornamental species grown worldwide for its attractive flowers and also having medicinal properties. Flat stem, little leaf, and phyllody symptoms were observed in I. balsamina nurseries in Uttar Pradesh and Tripura states of India during surveys from 2018 to 2020, with an incidence from 6 to 27%. Amplicons of ~ 1.2 kb were amplified in all the tested symptomatic samples of I. balsamina using universal phytoplasma primer pairs from different surveyed locations, but not from the asymptomatic plants. Pairwise sequence comparison, phylogeny, and virtual RFLP analysis of 16S rRNA gene sequences identified the phytoplasmas as 16SrI-B subgroup strain from Tripura (Lembucherra) and 16SrII-D subgroup strain from Uttar Pradesh (Gorakhpur and Faizabad). Phytoplasma presence and identity was further confirmed by amplifying secA, rp, secY, and tuf genes. This is the first report of 16SrI-B and 16SrII-D phytoplasmas detection in I. balsamina in the world.


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2761-2765 ◽  
Author(s):  
Daniela Flôres ◽  
Ana Paula de Oliveira Amaral Mello ◽  
Thays Benites Camargo Pereira ◽  
Jorge Alberto Marques Rezende ◽  
Ivan Paulo Bedendo

Erigeron sp. plants showing symptoms of witches' broom and stunting were found near orchards of passion fruit in São Paulo state, Brazil. These symptoms were indicative of infection by phytoplasmas. Thus, the aim of this study was to detect and identify possible phytoplasmas associated with diseased plants. Total DNA was extracted from symptomatic and asymptomatic plants and used in nested PCR conducted with the primer pairs P1/Tint and R16F2n/16R2. Amplification of genomic fragments of 1.2 kb from the 16S rRNA gene confirmed the presence of phytoplasma in all symptomatic samples. The sequence identity scores between the 16S rRNA gene of the phytoplasma strain identified in the current study and those of previously reported ‘Candidatus Phytoplasma fraxini’-related strains ranged from 98 % to 99 % indicating the phytoplasma to be a strain affiliated with ‘Candidatus Phytoplasma fraxini’. The results from a phylogenetic analysis and virtual RFLP analysis of the 16S rRNA gene sequence with 17 restriction enzymes revealed that the phytoplasma strain belongs to the ash yellows phytoplasma group (16SrVII); the similarity coefficient of RFLP patterns further suggested that the phytoplasma represents a novel subgroup, designated 16SrVII-D. The representative of this new subgroup was named EboWB phytoplasma (Erigeron bonariensis Witches' Broom).


2006 ◽  
Vol 106 (3) ◽  
pp. 297-306 ◽  
Author(s):  
A. Llorens ◽  
M.J. Hinojo ◽  
R. Mateo ◽  
M.T. González-Jaén ◽  
F.M. Valle-Algarra ◽  
...  

2006 ◽  
Vol 96 (12) ◽  
pp. 1363-1371 ◽  
Author(s):  
Leslie A. Wanner

Common scab is a serious disease of potatoes and other root and tuber crops, affecting crop quality and market value. The disease is caused by gram positive soil bacteria in the genus Streptomyces. Disease incidence and severity vary in different locations and years; this is due in part to variation in the environment (weather) and genetic variation in potato cultivars. Little information is available on the contribution of genetic variation by the pathogen. To examine genetic diversity in different locations within the United States, streptomycetes were isolated from lesions on field-grown potatoes from six states. Isolates were classified into species based on sequence of variable regions in the 16s rRNA gene. The presence of genes associated with the recently described S. turgidiscabies pathogenicity island (PAI) was also determined. About half of the isolates belonged to S. scabies or S. europaeiscabiei based on 16s rDNA sequence, and had characteristic features of the PAI. They were found in all six states, and were pathogenic on potato and radish. The remaining isolates included pathogens and nonpathogens. They were varied in appearance, and represent several species, including one pathogenic species not previously reported. Some pathogenic isolates lacked one or more genes characteristic of the PAI, although all had genes for biosynthesis of the pathogenicity determinant thaxtomin. In this relatively small survey, regional differences in scab-causing streptomycetes were seen. This report furnishes tools and baseline data for population genetic study of scab-causing streptomycetes in the United States.


2017 ◽  
Vol 36 (4) ◽  
pp. 143-154 ◽  
Author(s):  
Ramesh Pandita ◽  
Meenakshi Koul ◽  
Shivendra Singh

Purpose The purpose of this study is to reflect a growing trend toward the introduction of new research journals in India. The study focuses on the number of journals introduced in India during the past decade, namely, for the period 2005-2014. Some of the key aspects analyzed include year-wise distribution of journals introduced, cumulative and annual corresponding growth of newly introduced journals, publishing form of journals, namely, online, print and hybrid. Some other aspects studied include distribution of journals on the basis of language, periodicity, state, etc. for both online and print journals. Design/methodology/approach To undertake the present study, data were retrieved from the official website of the National Science Library, New Delhi, and the analysis is based on the number of ISSN numbers issued by the National Science Library New Delhi during the period of study. Findings A total of 15,631 research journals were introduced in India from 2005 through 2014. Compared to 4,954 (31.69 per cent) online journals, 10,614 (67.90 per cent) print journals were introduced in India during the past decade, depicting print as the larger medium of journal publishing in India. During the period of study, research journals in India grew annually at 31.44 per cent. New Delhi, Maharashtra and Uttar Pradesh emerged as the three leading research journal publishing states of the country, while 82.86 per cent journals are published in English language and a maximum 32.52 per cent journals are published on a quarterly basis. Originality/value The study is first of its kind undertaken in India.


Author(s):  

Abstract A new distribution map is provided for Tomato leaf curl New Delhi virus. Geminiviridae: Begomovirus. Hosts: tomato (Solanum lycopersicum) and other Solanaceae such as aubergine (S. melongena), potato (S. tuberosum), Capsicum spp. and Cucurbitaceae. Information is given on the geographical distribution in Europe (Italy, Sicily, Spain, Mainland Spain), Asia (Bangladesh, India, Andhra Pradesh, Delhi, Gujarat, Haryana, Karnataka, Maharashtra, Punjab, Tamil Nadu, Uttar Pradesh, West Bengal, Indonesia, Java, Iran, Pakistan, Philippines, Sri Lanka, Taiwan and Thailand) and Africa (Tunisia).


2017 ◽  
Vol 5 (1) ◽  
pp. 72-80
Author(s):  
Umesh Prasad Shrivastava

The rhizobacteria were isolated from rhizosphere of rice plant of different fields of 4 districts of Nepal and 5 districts of Bihar and Uttar Pradesh, adjoining states of India with Nepal. The DGGE analysis was performed for diversity analysis. For the construction of dendrogram, 16S rRNA gene was amplified by two different sets of primers. The DGGE ladder consisting of PCR amplified products of nine pure bacterial cultures were obtained. The first DGGE ladder was prepared by 400 bp fragment of 16S rDNA with GC clamp and the second DGGE ladder was prepared with 200 bp fragment of 16S rDNA with GC clamp. The perpendicular DGGE of these amplicons based on their melting behavior clearly demonstrated separation of different isolates. The 16S rDNA fragment amplified with primer set of V2-V3 regions with GC clamp showed separation between 40-60% of denaturant. The DGGE profile based on primer set F352T and 519r for various bacteria present in soil samples of 5 districts of India and 4 districts of Nepal revealed that the number of bands which might be specific for diazotrophic isolates varied from 2 to 11. The dendrogram constructed based on DGGE profile of various samples of 5 districts of India and 4 districts of Nepal showed that all the samples could be clustered in nine groups with 58-96% similarity to each other. Among all these 37 samples, only Var-4 and Var-5 showed 100% similarity, no other samples from any site showed 100% similarity. Int. J. Appl. Sci. Biotechnol. Vol 5(1): 72-80


Sign in / Sign up

Export Citation Format

Share Document