scholarly journals First Report of a 16SrIX Group (Pigeon Pea Witches'-Broom) Phytoplasma Associated with Sesame Phyllody in Turkey

Plant Disease ◽  
2013 ◽  
Vol 97 (6) ◽  
pp. 835-835 ◽  
Author(s):  
M. Catal ◽  
C. Ikten ◽  
E. Yol ◽  
R. Üstün ◽  
B. Uzun

Sesame (Sesamum indicum L.) is an important oilseed crops widely grown in the southern regions of Turkey. Sesame seeds are primarily used in production of tahini as well as a garnish on sweets and bakery products in the country. Sesame plants with phyllody disease symptoms have increasingly been observed in the fields of Antalya province since 2007. The disease incidence in these fields was found to range from 37 to 62% (2). Infected plants display a variety of the disease symptoms such as virescence, asymptomatic shoot proliferation, infertile flower formation, reduced leaf size, and thin and weak capsule development. Total genomic DNA was extracted from samples collected from symptomatic (10 plants) and asymptomatic healthy-looking plants (10 plants) using a CTAB method and amplified with universal primers P1/P7 and R16F2n/R16R2 in direct and nested PCR, respectively (1,3). Amplifications of the DNA from the symptomatic plants yielded a product of 1.8 kb in direct and 1.2 kb in nested PCR assays. No amplification was observed in symptomless plants of the same age and collected from the same fields. Amplicons were purified, cloned in a pTZ57R/T Vector, and sequenced using a Beckman Coulter 8000 CEQ Genetic Analysis System. Four aligned 16S rDNA sequences (1,845 bp) were found to be all identical and belonging to one species. One sequence was deposited in GenBank under the accession number KC139791. A BLAST similarity search revealed that the sequence shared 99% homology with the sequences of the members of 16SrIX group phytoplasmas, ‘Brassica rapa’ phyllody phytoplasma (HM559246.1) and Iranian Almond witches'-broom phytoplasma (DQ195209.1) available in GenBank. In addition, iPhyClassifier software (4) was employed to create a virtual RFLP profile. The analysis showed that the RFLP profile of the sesame phytoplasma 16S rDNA sequence is identical (a similarity coefficient of 1.00) to the profile of the 16Sr group IX phytoplasma reference sequence (Y16389). A phylogenetic tree was also constructed using the neighbor joining plot option of the Clustal X program. The sequence clustered together with 16SrIX group phytoplasmas. To our knowledge, this is the first report of a natural infection of sesame by a new phytoplasma species from the 16SrIX group in Turkey. References: (1) D. E. Gundersen and I.-M. Lee. Phytopathol. Mediterr. 35:144, 1996. (2) C. Ikten et al. Phytopathogenic Mollicutes 1:101, 2011. (3) C. D. Smart et al. Appl. Environ. Microbiol. 62:2988, 1996. (4) Y. Zhao et al. Int. J. Syst. Evol. Microbiol. 59:2582, 2009.

Plant Disease ◽  
2006 ◽  
Vol 90 (7) ◽  
pp. 973-973 ◽  
Author(s):  
N. A. Al-Saady ◽  
A. M. Al-Subhi ◽  
A. Al-Nabhani ◽  
A. J. Khan

Chickpea (Cicer arietinum), locally known as “Dungo”, is grown for legume and animal feed mainly in the interior region of Oman. During February 2006, survey samples of chickpea leaves from plants showing yellows disease symptoms that included phyllody and little leaf were collected from the Nizwa Region (175 km south of Muscat). Total nucleic acid was extracted from asymptomatic and symptomatic chickpea leaves using a cetyltrimethylammoniumbromide method with modifications (3). All leaf samples from eight symptomatic plants consistently tested positive using a polymerase chain reaction assay (PCR) with phytoplasma universal primers (P1/P7) that amplify a 1.8-kb phytoplasma rDNA product and followed by nested PCR with R16F2n/R16R2 primers yielding a product of 1.2 kb (2). No PCR products were evident when DNA extracted from healthy plants was used as template. Restriction fragment length polymorphism analysis of nested PCR products by separate digestion with Tru9I, HaeIII, HpaII, AluI, TaqI, HhaI, and RsaI restriction enzymes revealed that a phytoplasma belonging to group 16SrII peanut witches'-broom group (2) was associated with chickpea phyllody and little leaf disease in Oman. Restriction profiles of chickpea phytoplasma were identical with those of alfalfa witches'-broom phytoplasma, a known subgroup 16SrII-B strain (3). To our knowledge, this is the first report of phytoplasma infecting chickpea crops in Oman. References: (1) A. J. Khan et al. Phytopathology, 92:1038, 2002. (2). I.-M. Lee et al. Int. J. Syst. Bacteriol. 48:1153, 1998 (3) M. A. Saghai-Maroof et al. Proc. Natl. Acad. Sci. USA. 81:8014, 1984.


Plant Disease ◽  
2015 ◽  
Vol 99 (1) ◽  
pp. 155-155 ◽  
Author(s):  
S. T. Saeed ◽  
A. Khan ◽  
A. Samad

Andrographis paniculata (family Acanthaceae), also known as “King of Bitters” or Kalmegh, is an important medicinal plant used for the treatment of various diseases. It has antimicrobial, antiviral, anti-inflammatory, hepatoprotective, antidiabetic, antihyperglycemic, and antioxidant properties (1). During June 2014, while performing a routine survey of the commercial trial fields of Kalmegh at Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, India, typical phytoplasma disease symptoms such as virescence, proliferation, and witches' broom along with little leaf and stunted growth were observed. The disease incidence was estimated to be approximately 7 to 10%. To ascertain the presence of phytoplasma, 16 samples of leaves were collected from nine different field sites, and total genomic DNA was extracted from the symptomatic and symptomless Kalmegh plants by the CTAB method. Direct and nested PCR assays were performed targeting the 16S rDNA using generic phytoplasma primer pairs P1/P6 followed by R16F2n/R16R2 (2). Resulting bands of the expected size (1.5 kb and 1.2 kb, respectively) were amplified from symptomatic plants. No amplification was observed with DNA from asymptomatic plant samples. The purified nested PCR products were cloned into E. coli DH5α, using the pGEM-T Easy vector (Promega, United States) and sequenced with primers M13For/M13Rev using an automatic sequencer (ABI Prism, Perkin Elmer) at CIMAP. The sequence was analyzed by BLASTn and found to share 99% similarity with Echinacea witches'-broom phytoplasma and Sesame phyllody phytoplasma strain (GenBank Accession Nos. JF340080 and KF612966, respectively), which belong to the 16SrII-D group. The sequence was deposited in NCBI as GenBank Accession No. KM359410. A phylogenetic tree using MEGA v5.0 (4) was constructed with 16S rDNA; consensus sequences of phytoplasmas belonging to distinct groups revealed that the present phytoplasma clustered with the 16SrII group. iPhyClassifier software was used to perform sequence comparison and generate a virtual restriction fragment length polymorphism (RFLP) profile (5). On the basis of iPhyClassifier, the 16S rDNA sequence analysis of our isolate showed 99.2% similarity with that of the ‘Candidatus Phytoplasma australasiae’ reference strain (GenBank Accession No. Y10097), which belongs to 16Sr group II. The virtual RFLP pattern of F2n/R2 fragment was most similar to the 16SrII-D subgroup (similarity coefficient of 0.91) but showed a difference in profile with HpaI, HhaI, and MseI enzymes. Several bacterial/fungal and viral diseases have been reported on A. paniculata (3); however, to our knowledge, this is the first report of witches' broom disease in India and the first record of a 16SrII-D group phytoplasma on Kalmegh. Its presence in Kalmegh is of great significance due to its commercial interest. References: (1) S. Akbar. Altern. Med. Rev. 16:1, 2011. (2) D. E. Gundersen and M. Lee. Phytopathol. Mediterr. 35:144, 1996. (3) A. Khan and A. Samad. Plant Dis. 98:698, 2014. (4) K. Tamura et al. Mol. Biol. Evol. 28:2731, 2011. (5) Y. Zhao et al. Int. J. Syst. Evol. Microbiol. 59:2582, 2009.


Plant Disease ◽  
2008 ◽  
Vol 92 (9) ◽  
pp. 1364-1364 ◽  
Author(s):  
Y. Z. Ren ◽  
Y. Q. Liu ◽  
S. L. Ding ◽  
G. Y. Li ◽  
H. Zhang

Since the summer of 2006, bacterial boll rot of cotton has been observed on fruits of ‘Xinluzao 31’ (Xinluzao 6 × Acala) in Xinjiang Province. It resulted in as much as 20% yield loss in several fields. Symptoms do not appear on the outer carpel. In the infected cotton bolls, fibers do not mature completely and seed tissue exhibits brown necrotic coloration. Lint and seeds from 24 surface-disinfested cotton bolls were triturated and plated onto King's medium B (KB). Plates were incubated at 28°C for 48 h. Forty eight strains with yellow pigmentation on KB were characterized. All were nonfluorescent on KB, gram negative, facultatively anaerobic, unable to produce indole from tryptophan, able to reduce nitrate to nitrite, and produce acid from glucose, cellobiose, lactose, melibiose, and melonate. In addition, 16S rDNA in seven strains was amplified with universal primers (1). The PCR products were cloned into pGEM-T easy vector and sequenced. A BLAST search of the seven sequences against the GenBank nucleotide library indicated 100% identity with the 16S rDNA sequence of Enterobacter agglomerans strain A80. Then an additional primer pair, pagF and pagR (3), was used for more specific amplification of Pantoea agglomerans 16S rDNA, which resulted in single highly specific fragments of approximately 1 kb. On the basis of morphological, physiological, biochemical characteristics, and 16S rRNA gene sequence analysis, we identified the bacterium to be P. agglomerans. To confirm pathogenicity, cell suspensions (1 × 108 CFU/ml) of eight representative strains were used to inoculate cotton at peak bolling stage in the field. Cell suspensions, or water as the control, were applied to stigma scars, wall sutures, and scratch wounds on bracts, calyxes, and bolls. Alternatively, a needle was used to puncture through a drop of suspension placed on the boll wall suture and bracts. At least 20 bolls or flowers were inoculated with each bacterial strain per inoculation method. Infection occurred only when bacterial injections breached the endocarp of the boll either through the carpel wall or a suture between carpel sections. Disease symptoms developed 1 week postinoculation. The inoculated organism was reisolated from the diseased tissues. P. agglomerans is generally regarded to be a soil saprophyte or leaf epiphyte, but strains can opportunistically infect plants triggering gall formations or human wounds causing septic arthritis. The disease symptoms and pathogen characteristics observed in this study are identical to those reported in the United States (2). To our knowledge, this is the first report of P. agglomerans causing boll rot of cotton in China. References: (1) S. Manulisi and I. Barash. Mol. Plant Pathol. 4:307, 2003. (2) E. G. Medrano et al. J. Appl. Microbiol. 103:436, 2007. (3) S. Vorwerk et al. Agric. For. Entomol. 9:57, 2007.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jinhui Wang ◽  
Wanxin Han ◽  
Zheng Li ◽  
Jianing Cheng ◽  
Yang Pan ◽  
...  

In July 2020, potato plants (cv. Xisen 6) showing characteristic symptoms of aerial stem rot were observed in a field in Fengning Manchu Autonomous County, Chengde, Hebei Province (northern China). The disease incidence in that field (5 ha in size) was more than 50%. Aerial stem rot of potato has increased in prevalence over recent years in Chengde, it can cause significant yield loss on susceptible cultivars such as Xisen 6 and Huangxin 226. Affected stem (light brown and water-soaked stem sections) pieces ca. 0.5 cm in length were surface-sterilized by dipping them in 75% ethanol for one min and then three successive rinses with sterile distilled water. Then, the tissues were soaked in 200 µl 0.9% saline for 20 min. Aliquots (20 μl) of three tenfold dilutions of the tissue specimen soaking solution were plated onto the crystal violet pectate (CVP) medium. The CVP plates were incubated at 28°C for 48 h. Colonies producing pits were restreaked and purified on Luria-Bertani (LB) agar plates. The bacterial gDNA was extracted using the EasyPure Bacteria Genomic DNA Kit (TransGen Biotech, Beijing, China). The 16S rDNA region was amplified by PCR using the universal primers 27F/1492R (Weisburg et al. 1991) and sequenced. Results of the Blastn analysis of the 16S rDNA amplicons (MZ348607, MZ348608) suggested that the isolates FN20211 and FN20222 belonged to the genus Pectobacterium. Housekeeping genes including acnA, gapA, icdA, mdh, proA and rpoS were also amplified using a set of primers (Ma et al. 2007; Waleron et al. 2008) followed by sequencing (MZ356250-MZ356261). To determine the species of the stem rot Pectobacterium isolates, multi-locus sequence analysis (MLSA) was performed with six housekeeping genes, and phylogenetic tree was reconstructed using RAxML (github.com/stamatak/standard-RAxML). No sequence variation was observed at any MLSA locus between FN20211 and FN20222. The result of phylogenetic analysis showed that the isolates clustered with P. polaris type strain NIBIO1006T, which was isolated from potato (Dees et al. 2017). And the concatenated sequence of the six loci of isolate FN20211/FN20222 is 100% identical to those of the strains PZ1 (CP046377.1) and WBC1 (GCF_011378945.1), which were isolated from potato in South Korea and from Chinese cabbage in China, respectively. Potato seedlings (cv. Xisen 6 and Favorita) were inoculated with the isolates FN20211 and FN20222 by injecting 100 µl of bacterial suspensions (108 CFU·mL-1) into the upper parts of the stems of potato plants, or injected with 100 µl of 0.9% saline as control. The seedlings were grown at 25°C and 50% relative humidity. Three days after inoculation, only the bacteria-inoculated seedlings showed disease symptoms resembling to those observed in the field. Bacterial colonies were obtained from the infected stems and were identified using the same PCR primers as described above. Therefore, P. polaris isolates FN20211 and FN20222 fulfill Koch’s postulates for aerial stem rot of potato. P. polaris causing blackleg and soft rot on potato plants has been reported in European countries including Netherlands, Norway (Dees et al. 2017) and Poland (Waleron et al. 2019), and also in Pakistan (Sarfraz et al. 2019) and Russia (Voronina et al. 2021). To our knowledge, this is the first report of P. polaris causing aerial stem rot of potato in China. The stem rot poses a significant threat to the local potato industry, and further research on epidemiology and disease management options is needed.


Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1434-1434
Author(s):  
J.-H. Kwon ◽  
D.-W. Kang ◽  
M.-G. Cheon ◽  
J. Kim

In South Korea, the culture, production, and consumption of blueberry (Vaccinium corymbosum) have increased rapidly over the past 10 years. In June and July 2012, blueberry plants with leaf spots (~10% of disease incidence) were sampled from a blueberry orchard in Jinju, South Korea. Leaf symptoms included small (1 to 5 mm in diameter) brown spots that were circular to irregular in shape. The spots expanded and fused into irregularly shaped, large lesions with distinct dark, brownish-red borders. The leaves with severe infection dropped early. A fungus was recovered consistently from sections of surface-disinfested (1% NaOCl) symptomatic leaf tissue after transfer onto water agar and sub-culture on PDA at 25°C. Fungal colonies were dark olive and produced loose, aerial hyphae on the culture surfaces. Conidia, which had 3 to 6 transverse septa, 1 to 2 longitudinal septa, and sometimes also a few oblique septa, were pale brown to golden brown, ellipsoid to ovoid, obclavate to obpyriform, and 16 to 42 × 7 to 16 μm (n = 50). Conidiophores were pale to mid-brown, solitary or fasciculate, and 28 to 116 × 3 to 5 μm (n = 50). The species was placed in the Alternaria alternata group (1). To confirm the identity of the fungus, the complete internal transcribed spacer (ITS) rDNA region of a representative isolate, AAVC-01, was amplified using ITS1 and ITS4 primers (2). The DNA products were cloned into the pGEM-T Easy vector (Promega, Madison, WI) and the resulting pOR13 plasmid was sequenced using universal primers. The resulting 570-bp sequence was deposited in GenBank (Accession No. KJ636460). Comparison of ITS rDNA sequences with other Alternaria spp. using ClustalX showed ≥99% similarity with the sequences of A. alternata causing blight on Jatropha curcas (JQ660842) from Mexico and Cajannus cajan (JQ074093) from India, citrus black rot (AF404664) from South Africa, and other Alternaria species, including A. tenuissima (WAC13639) (3), A. lini (Y17071), and A. longipes (AF267137). Two base substitutions, C to T at positions 345 and 426, were found in the 570-bp amplicon. Phylogenetic analysis revealed that the present Alternaria sp. infecting blueberry grouped separately from A. tenuissima and A. alternata reported from other hosts. A representative isolate of the pathogen was used to inoculate V. corymbosum Northland leaves for pathogenicity testing. A conidial suspension (2 × 104 conidia/ml) from a single spore culture and 0.025% Tween was spot inoculated onto 30 leaves, ranging from recently emerged to oldest, of 2-year-old V. corymbosum Northland plants. Ten leaves were treated with sterilized distilled water and 0.025% Tween as a control. The plants were kept in a moist chamber with >90% relative humidity at 25°C for 48 h and then moved to a greenhouse. After 15 days, leaf spot symptoms similar to those observed in the field developed on the inoculated leaves, whereas the control plants remained asymptomatic. The causal fungus was re-isolated from the lesions of the inoculated plants to fulfill Koch's postulates. To our knowledge, this is the first report of Alternaria sp. on V. corymbosum in South Korea. References: (1) E. G. Simmons. Page 1797 in: Alternaria: An Identification Manual. CBS Fungal Biodiversity Centre, Utrecht, The Netherlands, 2007. (2) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990. (3) M. P. You et al. Plant Dis. 98:423, 2014.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yanxiang Qi ◽  
Yanping Fu ◽  
Jun Peng ◽  
Fanyun Zeng ◽  
Yanwei Wang ◽  
...  

Banana (Musa acuminate L.) is an important tropical fruit in China. During 2019-2020, a new leaf spot disease was observed on banana (M. acuminate L. AAA Cavendish, cv. Formosana) at two orchards of Chengmai county (19°48ʹ41.79″ N, 109°58ʹ44.95″ E), Hainan province, China. In total, the disease incidence was about 5% of banana trees (6 000 trees). The leaf spots occurred sporadically and were mostly confined to the leaf margin, and the percentage of the leaf area covered by lesions was less than 1%. Symptoms on the leaves were initially reddish brown spots that gradually expanded to ovoid-shaped lesions and eventually become necrotic, dry, and gray with a yellow halo. The conidia obtained from leaf lesions were brown, erect or curved, fusiform or elliptical, 3 to 4 septa with dimensions of 13.75 to 31.39 µm × 5.91 to 13.35 µm (avg. 22.39 × 8.83 µm). The cells of both ends were small and hyaline while the middle cells were larger and darker (Zhang et al. 2010). Morphological characteristics of the conidia matched the description of Curvularia geniculata (Tracy & Earle) Boedijn. To acquire the pathogen, tissue pieces (15 mm2) of symptomatic leaves were surface disinfected in 70% ethanol (10 s) and 0.8% NaClO (2 min), rinsed in sterile water three times, and transferred to potato dextrose agar (PDA) for three days at 28°C. Grayish green fungal colonies appeared, and then turned fluffy with grey and white aerial mycelium with age. Two representative isolates (CATAS-CG01 and CATAS-CG92) of single-spore cultures were selected for molecular identification. Genomic DNA was extracted from the two isolates, the internal transcribed spacer (ITS), large subunit ribosomal DNA (LSU rDNA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), translation elongation factor 1-alpha (TEF1-α) and RNA polymerase II second largest subunit (RPB2) were amplified and sequenced with universal primers ITS1/ITS4, LROR/LR5, GPD1/GPD2, EF1-983F/EF1-2218R and 5F2/7cR, respectively (Huang et al. 2017; Raza et al. 2019). The sequences were deposited in GenBank (MW186196, MW186197, OK091651, OK721009 and OK491081 for CATAS-CG01; MZ734453, MZ734465, OK091652, OK721100 and OK642748 for CATAS-CG92, respectively). For phylogenetic analysis, MEGA7.0 (Kumar et al. 2016) was used to construct a Maximum Likelihood (ML) tree with 1 000 bootstrap replicates, based on a concatenation alignment of five gene sequences of the two isolates in this study as well as sequences of other Curvularia species obtained from GenBank. The cluster analysis revealed that isolates CATAS-CG01 and CATAS-CG92 were C. geniculata. Pathogenicity assays were conducted on 7-leaf-old banana seedlings. Two leaves from potted plants were stab inoculated by puncturing into 1-mm using a sterilized needle and placing 10 μl conidial suspension (2×106 conidia/ml) on the surface of wounded leaves and equal number of leaves were inoculated with sterile distilled water serving as control (three replicates). Inoculated plants were grown in the greenhouse (12 h/12 h light/dark, 28°C, 90% relative humidity). Necrotic lesions on inoculated leaves appeared seven days after inoculation, whereas control leaves remained healthy. The fungus was recovered from inoculated leaves, and its taxonomy was confirmed morphologically and molecularly, fulfilling Koch’s postulates. C. geniculata has been reported to cause leaf spot on banana in Jamaica (Meredith, 1963). To our knowledge, this is the first report of C. geniculata on banana in China.


Plant Disease ◽  
2001 ◽  
Vol 85 (4) ◽  
pp. 447-447 ◽  
Author(s):  
I.-M. Lee ◽  
R. A. Dane ◽  
M. C. Black ◽  
Noel Troxclair

In early spring 2000 carrot crops in southwestern Texas were severely infected by an outbreak of phyllody associated with aster yellows phytoplasma. Cabbage crops that had been planted adjacent to these carrot fields began to display previously unobserved symptoms characteristic of phytoplasma infection. Symptoms included purple discoloration in leaf veins and at the outer edges of leaves on cabbage heads. Proliferation of sprouts also occurred at the base of the stem and between leaf layers of some plants, and sprouts sometimes continued to proliferate on extended stems. About 5% of cabbage plants in the field exhibited these symptoms. Two symptomless and four symptomatic cabbage heads were collected in early April from one cabbage field. Veinal tissues were stripped from each sample and used for total nucleic acid extraction. To obtain specific and sufficient amount of PCR products for analysis, nested PCR was performed by using primer pairs (first with P1/P7 followed by R16F2n/R16R2) (1,2) universal for phytoplasma detection. A specific 16S rDNA fragment (about 1.2 kb) was strongly amplified from the four symptomatic but not from the two asymptomatic samples. The nested PCR products obtained from the four symptomatic samples were then analyzed by restriction fragment length polymorphism (RFLP) using the restriction enzymes MseI, HhaI, and HpaII, and the RFLP patterns were compared to the published patterns of known phytoplasmas (1). The resulting RFLP patterns were identical to those of a phytoplasma belonging to subgroup B of the aster yellows phytoplasma group (16SrI). These RFLP patterns were also evident in putative restriction sites observed in a 1.5 kbp nucleotide sequence of the 16S rDNA. This is the first report of aster yellows phytoplasma associated disease symptoms in cabbage in Texas. The occurrence of cabbage proliferation coincided with the presence of high populations of the insect vector, aster leafhopper. References: (1) I.-M. Lee et al. Int. J. Syst. Bacteriol. 48:1153, 1998. (2) B. Schneider et al. 1995. Molecular and Diagnostic Procedures in Mycoplasmology, Vol. I. Academic Press, San Diego, CA.


Plant Disease ◽  
2010 ◽  
Vol 94 (3) ◽  
pp. 380-380 ◽  
Author(s):  
L. Baeza-Montañez ◽  
R. Gómez-Cabrera ◽  
M. D. García-Pedrajas

Verticillium wilt, primarily caused by Verticillium dahliae Klebahn and V. albo-atrum Reinke & Berthold, affects a wide range of economically important crops. This disease is an increasing problem in areas where young mango trees are planted on land previously planted in vegetable crops. In 2008, symptoms of Verticillium wilt were observed in mango cvs. Kent and Osteen in the subtropical fruit-producing area of Málaga in southern Spain. In a new mango grove of cv. Kent, previously planted in potatoes and tomatoes, ~20% of 200 1-year-old trees had one-sided branch dieback. In many of these trees the symptoms expanded, leading to decline and eventual death. Cross sections of affected branches revealed brown vascular discoloration. Verticillium was isolated from surface-sterilized segments of symptomatic branches placed on acidic potato dextrose agar (PDA). Plates were incubated at 24°C. After 3 days, slow-growing colonies were transferred to PDA. Verticillium was similarly isolated from symptomatic potato plants grown in a nearby field. Identification of V. dahliae was initially based on morphology and further confirmed by molecular methods. All isolates tested produced microsclerotia, a defining feature that distinguishes V. dahliae from V. albo-atrum. For molecular characterization, V. dahliae specific primers 19 and 22 (1) and universal primers ITS1 and ITS4, which amplify the rRNA internal transcribed spacer (ITS) region (4), were used. Bands of expected size were amplified with both primer combinations. ITS fragments were sequenced and identical to the V. dahliae reference sequence (GenBank AY555948) (3). Pathogenicity assays were conducted with a selected isolate from mango using tomato plants from the susceptible line ‘Moneymaker’ and the near isogenic ‘Motabo’ line carrying the Ve gene conferring resistance to race 1 isolates. Five 1-month-old plants (four-leaf stage) were inoculated by root immersion in a suspension of 107 conidia/ml. Five control plants were mock inoculated with distilled water. As a positive control, five plants were inoculated with the previously described race 1 strain Dvd-T5 (2), which induces severe symptoms in susceptible tomato cultivars. Symptoms were scored visually at various time points up to 40 days by a 0 to 5 scale in which 0 = negligible chlorosis or wilting, 1 = chlorosis and wilting and/or curling in individual leaves, 2 = necrosis in leaves, 3 = at least one branch dead, 4 = wilt and/or chlorosis in upper leaves and/or two or more branches dead, and 5 = plant dead or all leaves and most of stem necrotic. The isolate from mango caused typical Verticillium wilt symptoms with a mean disease rating of 3.6 at 40 days postinoculation in both lines. The mean disease rating for Dvd-T5 in Moneymaker 40 days postinoculation was 4.0. V. dahliae was reisolated from symptomatic plants but not from noninoculated controls. To our knowledge, this is the first report of Verticillium wilt on mango in Spain. More problems with Verticillium wilt are expected because of the increasing planting of mango in fields previously dedicated to horticultural crops. References: (1) J. H. Carder et al. Modern Assays for Plant Pathogenic Fungi: Identification, Detection and Quantification. CAB International, Oxford, 1994. (2) K. F. Dobinson et al. Can. J. Plant. Pathol. 18:55, 1996. (3) M. P. Pantou et al. Mycol. Res. 109:889, 2005. (4) T. J. White et al. PCR Protocols: A Guide to Methods and Amplification. Academic Press, San Diego, 1990.


Plant Disease ◽  
2014 ◽  
Vol 98 (12) ◽  
pp. 1739-1739 ◽  
Author(s):  
M. C. Holeva ◽  
P. E. Glynos ◽  
C. D. Karafla ◽  
E. M. Koutsioumari ◽  
K. B. Simoglou ◽  
...  

In August 2013, potato plants (Solanum tuberosum) cv. Banba displaying symptoms resembling those caused by Candidatus Phytoplasma solani (potato stolbur phytoplasma) were observed in a 2-ha field in the area of the Peripheral Unit of Drama (northern Greece). The plants were 10 weeks old and their symptoms included reddening and upward rolling of leaflets, reduced size of leaves, shortened internodes, and aerial tuber formation. Incidence of affected plants was estimated to be 40% in the field. Four symptomatic potato plants were collected for laboratory testing of possible phytoplasma infection. From each of these four plants, total DNA was extracted from mid veins of reddish leaflets from apical shoot parts and of leaflets emerging from aerial tubers, using a phytoplasma enrichment procedure (1). A nested PCR using the phytoplasma universal 16S rRNA primer pairs: P1/P7 followed by R16F2n/R16R2 (3) amplified the expected ~1.2-kb 16S rDNA fragment in all four symptomatic potato plants. No amplification was observed with DNA similarly extracted from leaflets of asymptomatic potato plants of the same variety collected from an apparently healthy crop. One of the four 1.2-kb nested 16S rDNA PCR products was gel purified, cloned into the pGEM-T-easy plasmid vector (Promega, Madison, WI), and sequenced by Beckman Coulter Genomics (United Kingdom). At least twofold coverage per base position of the cloned PCR product was achieved. BLAST analysis showed that the obtained sequence of the PCR 16S rDNA product was: i) 100% identical to several GenBank sequences of Ca. P. solani strains, including strains detected previously in Greece infecting tomato (GenBank Accession No. JX311953) and Datura stramonium (HE598778 and HE598779), and ii) 99.7% similar to that of the Ca. P. solani reference strain STOL11 (AF248959). Furthermore, analysis by iPhyClassifier software showed that the virtual restriction fragment length polymorphism (RFLP) pattern of the sequenced PCR 16S rDNA product is identical (similarity coefficient 1.00) to the reference pattern of the 16SrXII-A subgroup (AF248959). The sequence of this PCR product was deposited in NCBI GenBank database under the accession no. KJ810575. The presence of the stolbur phytoplasma in all four symptomatic potato plants examined was further confirmed by nested PCR using the stolbur-specific STOL11 primers (3) targeting non-ribosomal DNA. Based on the observed symptoms in the field and laboratory molecular examinations, we concluded that the potato plants were infected by a Ca. P. solani related strain. The stolbur disease has been previously reported in Greece affecting tomato (2,5) and varieties of D. stramonium (4). To our knowledge, this is the first report of a Ca. P. solani related strain infecting a potato crop in Greece. As northern Greece is a center of potato production, the source of this pathogen is to be investigated. References: (1) U. Ahrens and E. Seemuller. Phytopathology 82:828, 1992. (2) A. S. Alivizatos. Pages 945-950 in: Proceedings of the 7th International Conference of Plant Pathogenic Bacteria. Academiai Kiado, Budapest, Hungary, 1989. (3) J. Jović et al. Bull. Insectol. 64:S83, 2011. (4) L. Lotos et al. J. Plant Pathol. 95:447, 2013. (5) E. Vellios and F. Lioliopoulou. Bull. Insectol. 60:157, 2007.


Plant Disease ◽  
1999 ◽  
Vol 83 (5) ◽  
pp. 488-488 ◽  
Author(s):  
R. D. Peters ◽  
M. E. Lee ◽  
C. R. Grau ◽  
S. J. Driscoll ◽  
R. M. Winberg ◽  
...  

Samples of alfalfa (Medicago sativa L.) leaves and stems showing symptoms of inter-veinal chlorosis and purpling, commonly associated with insect feeding, were collected from 8 sites in central and southern Wisconsin in autumn of 1998. Samples were frozen within 24 h of collection. Approximately 0.3 g of plant tissue from each sample was used for total DNA extraction according to the protocol of Zhang et al. (4), with minor modifications in grinding procedures and reagent volumes to optimize results. Nested polymerase chain reaction (PCR) was carried out by amplification of 16S rDNA with the universal primer pairs R16mF2/R16mR1 followed by R16F2n/R16R2 as described by Gunder-sen and Lee (1). Undiluted total sample DNA was used for the first amplification; PCR products were diluted (1:30) in sterile water prior to final amplification. Alfalfa DNA and sterile water were used as negative controls; DNA from phytoplasma causing X-disease in peach (CX) served as a positive control. Fragments of 16S rDNA from putative phytoplasmas amplified by PCR with the primer pair R16F2n/R16R2 were characterized by restriction endonuclease digestion (3). The resulting restriction fragment length polymorphism (RFLP) patterns were compared with patterns for known phytoplasmas described by Lee et al. (3). Products of nested PCR were also purified and sequenced with primers R16F2n/R16R2 and an automated DNA sequencer (ABI 377XL; C. Nicolet, Biotechnology Center, University of Wisconsin-Madison). Of 51 samples of alfalfa assessed, one sample from Evansville, WI, yielded a nested PCR product of the appropriate size (1.2 kb), indicating the presence of phytoplasma. Digestion of this product with various restriction enzymes produced RFLP patterns that were identical to those for phytoplasmas in the aster yellows phytoplasma subgroup 16SrI-A (3). Alignment of the DNA sequence of the nested PCR product from the positive sample with sequences found in the GenBank sequence data base (National Center for Biotechnology Information, Bethesda, MD) with the BLAST sequence similarity function confirmed this result. Although other phytoplasma strains (particularly those causing witches'-broom) have been reported to infect alfalfa (2), this is the first report of the presence of the aster yellows phytoplasma in the alfalfa crop. Vectors involved in transmission and the potential agronomic impacts of aster yellows phytoplasma in alfalfa are topics of current investigation. References: (1) D. E. Gundersen and I.-M. Lee. Phytopathol. Mediterr. 35:144, 1996. (2) A.-H. Khadhair et al. Microbiol. Res. 152:269, 1997. (3) I.-M. Lee et al. Int. J. Syst. Bacteriol. 48:1153, 1998. (4) Y.-P. Zhang et al. J. Virol. Methods 71:45, 1998.


Sign in / Sign up

Export Citation Format

Share Document