Reemergence of Septoria leaf spot caused by Septoria cannabis on hemp in the Kentucky

Plant Disease ◽  
2021 ◽  
Author(s):  
Mostafa Rahnama ◽  
Desiree Szarka ◽  
Hua Li ◽  
Ed Dixon ◽  
Lisa Castlebury ◽  
...  

Hemp reemerged in 2014 after being illegal for over 50 years and restricted for 90 years. Today, hemp is primarily grown for production of cannabidiol (CBD) with limited acreage dedicated to fiber. One of the most frequent and destructive leaf spot diseases of hemp cultivars grown for CBD is Septoria leaf spot. Symptoms are mostly observed in lower leaves and inner canopy. Leaf spots begin as small, irregular, brown to gray spots that rapidly expand to about 5.0 to 7.5 mm in diameter. Pycnidia are scattered, round, dark brown to black in color and measure 38.8 to 145.0 μm in diameter. Conidia are hyaline, curved but occasionally straight, pointed at the apex, and contain 3 to 4 septa. Morphological characteristics were like those reported for S. cannabis. Gene sequences from seven diagnostic loci (EF, TUB, RPB2, LSU, ITS, ACT and CAL) did not match any published accessions. There are no published sequences for S. cannabis available for comparison. Phylogenetic analysis of concatenated sequences showed that isolates from hemp grouped separately from other Septoria spp. Similarity of morphological characteristics and lack of matching sequence data to other Septoria spp. led to the conclusion that isolates collected from hemp in Kentucky are S. cannabis. This new information will serve as an update for Septoria leaf spot diagnostics, especially as hemp acreage continues to increase across the US.

Plant Disease ◽  
2021 ◽  
Author(s):  
Yuan-Zhi Si ◽  
De-Wei Li ◽  
Jing Zhong ◽  
Lin Huang ◽  
Li-Hua Zhu

Sapindus mukorossi Gaertn. (Sapindaceae), soapberry is an important biodiesel tree in southern China. In recent years, leaf spot disease on soapberry has been observed frequently in soapberry germplasm repository, Jianning County, Sanming City, Fujian Province, China. The symptoms initially appeared as irregular small yellow spots, and the center of the lesions became dark brown with time. Three fungal isolates from lesions were collected. Koch's postulates were performed, and their pathogenicity was confirmed. Morphologically, α conidia from diseased tissues were 1-celled, hyaline, smooth, clavate or ellipsoidal, biguttulate, and measured 6.2–7.2 × 2.3–2.7 μm. In addition, the three isolates in this study developed three types (α, β, and γ) of conidia on PDA, and their morphological characteristics matched those of Diaporthe. A phylogenetic analysis based on ITS, TEF, TUB, HIS, and CAL sequence data determined that the three isolates are a new species of Diaporthe. Based on both morphological and phylogenetic analyses, the causal fungus, Diaporthe sapindicola sp. nov. was described and illustrated.


Phytotaxa ◽  
2020 ◽  
Vol 474 (1) ◽  
pp. 27-39
Author(s):  
SAOWALUCK TIBPROMMA ◽  
SAMANTHA C. KARUNARATHNA ◽  
PETER E. MORTIMER ◽  
JIANCHU XU ◽  
MINGKWAN DOILOM ◽  
...  

This paper introduces an interesting new fungus, isolated from teak (Tectona grandis) leaf-spots, collected in Chiang Rai Province, Thailand. Phylogenetic analysis of combined ITS and LSU sequence data together with morphological studies confirmed that the disease was caused by a Bartalinia species, distinct from described taxa. Detailed description, photomicrographs and a phylogenetic tree are provided to showcase the taxonomic placement of the new species, B. kevinhydei. Geographical distribution of Bartalinia species is also provided. This is the first report of a Bartalinia species growing on teak, and also the first report for Bartalinia in Thailand.


Plant Disease ◽  
2004 ◽  
Vol 88 (4) ◽  
pp. 397-401 ◽  
Author(s):  
I. Roloff ◽  
H. Scherm ◽  
M. W. van Iersel

Leaf spots caused by fungal pathogens or abiotic factors can be prevalent on southern blueberries after harvest during the summer and fall, yet little is known about how they affect physiological processes that determine yield potential for the following year. In this study, we measured CO2 assimilation and leaf conductance on field-grown blueberry plants affected by Septoria leaf spot (caused by Septoria albopunctata) or by edema-like abiotic leaf blotching. Net assimilation rate (NAR) on healthy leaves varied between 6.9 and 12.4 μmol m-2 s-1 across cultivars and measurement dates. Infection by S. albopunctata had a significant negative effect on photosynthesis, with NAR decreasing exponentially as disease severity increased (R2 ≥0.726, P < 0.0001). NAR was reduced by approximately one-half at 20% disease severity, and values approached zero for leaves with >50% necrotic leaf area. There was a positive, linear correlation between NAR and leaf conductance (R2 ≥ 0.622, P < 0.0001), suggesting that the disease may have reduced photosynthesis via decreased CO2 diffusion into affected leaves. Estimates of virtual lesion size associated with infection by S. albopunctata ranged from 2.8 to 3.1, indicating that the leaf area in which photosynthesis was impaired was about three times as large as the area covered by necrosis. For leaves afflicted by edema-like damage, there also was a significant negative relationship between NAR and affected leaf area, but the scatter about the regression was more pronounced than in the NAR-disease severity relationships for S. albopunctata (R2 = 0.548, P < 0.0001). No significant correlation was observed between leaf conductance and affected area on these leaves (P = 0.145), and the virtual lesion size associated with abiotic damage was significantly smaller than that caused by S. albopunctata. Adequate carbohydrate supply during the fall is critical for optimal flower bud set in blueberry; therefore, these results document the potential for marked yield losses due to biotic and abiotic leaf spots.


Plant Disease ◽  
2013 ◽  
Vol 97 (8) ◽  
pp. 1116-1116 ◽  
Author(s):  
V. Parkunan ◽  
S. Li ◽  
E. G. Fonsah ◽  
P. Ji

Research efforts were initiated in 2003 to identify and introduce banana (Musa spp.) cultivars suitable for production in Georgia (1). Selected cultivars have been evaluated since 2009 in Tifton Banana Garden, Tifton, GA, comprising of cold hardy, short cycle, and ornamental types. In spring and summer of 2012, 7 out of 13 cultivars (African Red, Blue Torres Island, Cacambou, Chinese Cavendish, Novaria, Raja Puri, and Veinte Cohol) showed tiny, oval (0.5 to 1.0 mm long and 0.3 to 0.9 mm wide), light to dark brown spots on the adaxial surface of the leaves. Spots were more concentrated along the midrib than the rest of the leaf and occurred on all except the newly emerged leaves. Leaf spots did not expand much in size, but the numbers approximately doubled during the season. Disease incidences on the seven cultivars ranged from 10 to 63% (10% on Blue Torres Island and 63% on Novaria), with an average of 35% when a total of 52 plants were evaluated. Six cultivars including Belle, Ice Cream, Dwarf Namwah, Kandarian, Praying Hands, and Saba did not show any spots. Tissue from infected leaves of the seven cultivars were surface sterilized with 0.5% NaOCl, plated onto potato dextrose agar (PDA) media and incubated at 25°C in the dark for 5 days. The plates were then incubated at room temperature (23 ± 2°C) under a 12-hour photoperiod for 3 days. Grayish black colonies developed from all the samples, which were further identified as Alternaria spp. based on the dark, brown, obclavate to obpyriform catenulate conidia with longitudinal and transverse septa tapering to a prominent beak attached in chains on a simple and short conidiophore (2). Conidia were 23 to 73 μm long and 15 to 35 μm wide, with a beak length of 5 to 10 μm, and had 3 to 6 transverse and 0 to 5 longitudinal septa. Single spore cultures of four isolates from four different cultivars were obtained and genomic DNA was extracted and the internal transcribed spacer (ITS1-5.8S-ITS2) regions of rDNA (562 bp) were amplified and sequenced with primers ITS1 and ITS4. MegaBLAST analysis of the four sequences showed that they were 100% identical to two Alternaria alternata isolates (GQ916545 and GQ169766). ITS sequence of a representative isolate VCT1FT1 from cv. Veinte Cohol was submitted to GenBank (JX985742). Pathogenicity assay was conducted using 1-month-old banana plants (cv. Veinte Cohol) grown in pots under greenhouse conditions (25 to 27°C). Three plants were spray inoculated with the isolate VCT1FT1 (100 ml suspension per plant containing 105 spores per ml) and incubated under 100% humidity for 2 days and then kept in the greenhouse. Three plants sprayed with water were used as a control. Leaf spots identical to those observed in the field were developed in a week on the inoculated plants but not on the non-inoculated control. The fungus was reisolated from the inoculated plants and the identity was confirmed by morphological characteristics and ITS sequencing. To our knowledge, this is the first report of Alternaria leaf spot caused by A. alternata on banana in the United States. Occurrence of the disease on some banana cultivars in Georgia provides useful information to potential producers, and the cultivars that were observed to be resistant to the disease may be more suitable for production. References: (1) E. G. Fonsah et al. J. Food Distrib. Res. 37:2, 2006. (2) E. G. Simmons. Alternaria: An identification manual. CBS Fungal Biodiversity Center, Utrecht, Netherlands, 2007.


Plant Disease ◽  
2012 ◽  
Vol 96 (10) ◽  
pp. 1580-1580
Author(s):  
J. H. Park ◽  
K. S. Han ◽  
J. Y. Kim ◽  
H. D. Shin

Sweet basil, Ocimum basilicum L., is a fragrant herb belonging to the family Lamiaceae. Originated in India 5,000 years ago, sweet basil plays a significant role in diverse cuisines across the world, especially in Asian and Italian cooking. In October 2008, hundreds of plants showing symptoms of leaf spot with nearly 100% incidence were found in polyethylene tunnels at an organic farm in Icheon, Korea. Leaf spots were circular to subcircular, water-soaked, dark brown with grayish center, and reached 10 mm or more in diameter. Diseased leaves defoliated prematurely. The damage purportedly due to this disease has reappeared every year with confirmation of the causal agent made again in 2011. A cercosporoid fungus was consistently associated with disease symptoms. Stromata were brown, consisting of brown cells, and 10 to 40 μm in width. Conidiophores were fasciculate (n = 2 to 10), olivaceous brown, paler upwards, straight to mildly curved, not geniculate in shorter ones or one to two times geniculate in longer ones, 40 to 200 μm long, occasionally reaching up to 350 μm long, 3.5 to 6 μm wide, and two- to six-septate. Conidia were hyaline, acicular to cylindric, straight in shorter ones, flexuous to curved in longer ones, truncate to obconically truncate at the base, three- to 16-septate, and 50 to 300 × 3.5 to 4.5 μm. Morphological characteristics of the fungus were consistent with the previous reports of Cercospora guatemalensis A.S. Mull. & Chupp (1,3). Voucher specimens were housed at Korea University herbarium (KUS). An isolate from KUS-F23757 was deposited in the Korean Agricultural Culture Collection (Accession No. KACC43980). Fungal DNA was extracted with DNeasy Plant Mini DNA Extraction Kits (Qiagen Inc., Valencia, CA). The complete internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced. The resulting sequence of 548 bp was deposited in GenBank (Accession No. JQ995781). This showed >99% similarity with sequences of many Cercospora species, indicating their close phylogenetic relationship. Isolate of KACC43980 was used in the pathogenicity tests. Hyphal suspensions were prepared by grinding 3-week-old colonies grown on PDA with distilled water using a mortar and pestle. Five plants were inoculated with hyphal suspensions and five plants were sprayed with sterile distilled water. The plants were covered with plastic bags to maintain a relative humidity of 100% for 24 h and then transferred to a 25 ± 2°C greenhouse with a 12-h photoperiod. Typical symptoms of necrotic spots appeared on the inoculated leaves 6 days after inoculation, and were identical to the ones observed in the field. C. guatemalensis was reisolated from symptomatic leaf tissues, confirming Koch's postulates. No symptoms were observed on control plants. Previously, the disease was reported in Malawi, India, China, and Japan (2,3), but not in Korea. To our knowledge, this is the first report of C. guatemalensis on sweet basil in Korea. Since farming of sweet basil has recently started on a commercial scale in Korea, the disease poses a serious threat to safe production of this herb, especially in organic farming. References: (1) C. Chupp. A Monograph of the Fungus Genus Cercospora. Ithaca, NY, 1953. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology & Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , May 5, 2012. (3) J. Nishikawa et al. J. Gen. Plant Pathol. 68:46, 2002.


Plant Disease ◽  
2003 ◽  
Vol 87 (2) ◽  
pp. 203-203
Author(s):  
S. T. Koike ◽  
S. A. Tjosvold ◽  
J. Z. Groenewald ◽  
P. W. Crous

Bells-of-Ireland (Moluccella laevis) (Lamiaceae) is an annual plant that is field planted in coastal California (Santa Cruz County) for commercial cutflower production. In 2001, a new leaf spot disease was found in these commercially grown cutflowers. The disease was most serious in the winter-grown crops in 2001 and 2002, with a few plantings having as much as 100% disease incidence. All other plantings that were surveyed during this time had at least 50% disease. Initial symptoms consisted of gray-green leaf spots. Spots were generally oval in shape, often delimited by the major leaf veins, and later turned tan. Lesions were apparent on both adaxial and abaxial sides of the leaves. A cercosporoid fungus having fasciculate conidiophores, which formed primarily on the abaxial leaf surface, was consistently associated with the spots. Based on morphology and its host, this fungus was initially considered to be Cercospora molucellae Bremer & Petr., which was previously reported on leaves of M. laevis in Turkey (1). However, sequence data obtained from the internal transcribed spacer region (ITS1, ITS2) and the 5.8S gene (STE-U 5110, 5111; GenBank Accession Nos. AY156918 and AY156919) indicated there were no base pair differences between the bells-of-Ireland isolates from California, our own reference isolates of C. apii, as well as GenBank sequences deposited as C. apii. Based on these data, the fungus was subsequently identified as C. apii sensu lato. Pathogenicity was confirmed by spraying a conidial suspension (1.0 × 105 conidia/ml) on leaves of potted bells-of-Ireland plants, incubating the plants in a dew chamber for 24 h, and maintaining them in a greenhouse (23 to 25°C). After 2 weeks, all inoculated plants developed leaf spots that were identical to those observed in the field. C. apii was again associated with all leaf spots. Control plants, which were treated with water, did not develop any symptoms. The test was repeated and the results were similar. To our knowledge this is the first report of C. apii as a pathogen of bells-of-Ireland in California. Reference: (1) C. Chupp. A Monograph of the Fungus Genus Cercospora. Cornell University Press, Ithaca, New York, 1954.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jiahao Lai ◽  
Tongke Liu ◽  
Bing Liu ◽  
Weigang Kuang ◽  
Shuilin Song

Sweet potato [Ipomoea batatas (L.) Lam], is an extremely versatile vegetable that possesses high nutritional values. It is also a valuable medicinal plant having anti-cancer, antidiabetic, and anti-inflammatory activities. In July 2020, leaf spot was observed on leaves of sweet potato in Nanchang, China (28°45'51"N, 115°50'52"E), which affected the growth and development of the crop and caused tuberous roots yield losses of 25%. The disease incidence (total number of diseased plants / total number of surveyed plants × 100%) was 57% from a sampled population of 100 plants in the field. Symptomatic plants initially exhibited small, light brown, irregular-shaped spots on the leaves, subsequently coalescing to form large irregular brown lesions and some lesions finally fell off. Fifteen small pieces (each 5 mm2) of symptomatic leaves were excised from the junction of diseased and healthy tissue, surface sterilized in 75% ethanol solution for 30 sec and 0.1% mercuric chloride solution for 2 min, rinsed three times with sterile distilled water and incubated on potato dextrose agar (PDA) plates at 28°C in darkness. A total of seven fungal isolates with similar morphological characteristics were obtained as pure cultures by single-spore isolation. After 5 days of cultivation at 28°C, dark brown or blackish green colonies were observed, which developed brown, thick-walled, simple, or branched, and septate conidiophores. Conidia were 18.28 to 24.91 × 7.46 to 11.69 µm (average 21.27 × 9.48 µm, n = 100) in size, straight or slightly curved, middle cell unequally enlarged, brown to dark brown, apical, and basal cells slightly paler than the middle cells, with three septa. Based on morphological characteristics, the fungal isolates were suspected to be Curvularia plantarum (Raza et al. 2019). To further confirm the identification, three isolates (LGZ1, LGZ4 and LGZ5) were selected for molecular identification. The internal transcribed spacer region (ITS), glyceraldehyde-3-phosphate-dehydrogenase (GAPDH), and translation elongation factor 1-alpha (EF1-α) genes were amplified and sequenced using primers ITS1/ITS4 (Peever et al. 2004), gpd1/gpd2 (Berbee et al. 1999), EF-983F/EF-2218R (Rehner and Buckley 2005), respectively. The sequences of ITS region of the three isolates (accession nos. MW581905, MZ209268, and MZ227555) shared 100% identity with those of C. plantarum (accession nos. MT410571-72, MN044754-55). Their GAPDH gene sequences were identical (accession nos. MZ224017-19) and shared 100% identity with C. plantarum (accession nos. MN264120, MT432926, and MN053037-38). Similarly, EF1-α gene sequences were identical (accession nos. MZ224020-22) and had 100% identity with C. plantarum (accession nos. MT628901, MN263982-83). A maximum likelihood phylogenetic tree was built based on concatenated data from the sequences of ITS, GAPDH, and EF-1α by using MEGA 5. The three isolates LGZ1, LGZ4, and LGZ5 clustered with C. plantarum. The fungus was identified as C. plantarum by combining morphological and molecular characteristics. Pathogenicity tests were conducted by inoculating a conidial suspension (106 conidia/ml) on three healthy potted I. batatas plants (five leaves wounded with sterile needle of each potted plant were inoculated). In addition, fifteen wounded leaves of three potted plants were sprayed with sterile distilled water as a control. All plants were maintained in a climate box (12 h light/dark) at 25°C with 80% relative humidity. All the inoculated leaves started showing light brown flecks after 7 days, whereas the control leaves showed no symptoms. The pathogenicity test was conducted three times. The fungus was reisolated from all infected leaves of potted plants and confirmed as C. plantarum by morphological and molecular identification, fulfilling Koch’s postulates. To our knowledge, this is the first report of C. plantarum causing leaf spot on sweet potato in China. The discovery of this new disease and the identification of the pathogen will contribute to the disease management, provide useful information for reducing economic losses caused by C. plantarum, and lay a foundation for the further research of resistance breeding.


2015 ◽  
Vol 65 (Pt_2) ◽  
pp. 723-731 ◽  
Author(s):  
Ronel Roberts ◽  
Emma T. Steenkamp ◽  
Gerhard Pietersen

Greening disease of citrus in South Africa is associated with ‘Candidatus Liberibacter africanus’ (Laf), a phloem-limited bacterium vectored by the sap-sucking insect Trioza erytreae (Triozidae). Despite the implementation of control strategies, this disease remains problematic, suggesting the existence of reservoir hosts to Laf. The current study aimed to identify such hosts. Samples from 234 trees of Clausena anisata, 289 trees of Vepris lanceolata and 231 trees of Zanthoxylum capense were collected throughout the natural distribution of these trees in South Africa. Total DNA was extracted from samples and tested for the presence of liberibacters by a generic Liberibacter TaqMan real-time PCR assay. Liberibacters present in positive samples were characterized by amplifying and sequencing rplJ, omp and 16S rRNA gene regions. The identity of tree host species from which liberibacter sequences were obtained was verified by sequencing host rbcL genes. Of the trees tested, 33 specimens of Clausena, 17 specimens of Vepris and 10 specimens of Zanthoxylum tested positive for liberibacter. None of the samples contained typical citrus-infecting Laf sequences. Phylogenetic analysis of 16S rRNA gene sequences indicated that the liberibacters obtained from Vepris and Clausena had 16S rRNA gene sequences identical to that of ‘Candidatus Liberibacter africanus subsp. capensis’ (LafC), whereas those from Zanthoxylum species grouped separately. Phylogenetic analysis of the rplJ and omp gene regions revealed unique clusters for liberibacters associated with each tree species. We propose the following names for these novel liberibacters: ‘Candidatus Liberibacter africanus subsp. clausenae’ (LafCl), ‘Candidatus Liberibacter africanus subsp. vepridis’ (LafV) and ‘Candidatus Liberibacter africanus subsp. zanthoxyli’ (LafZ). This study did not find any natural hosts of Laf associated with greening of citrus. While native citrus relatives were shown to be infected with Laf-related liberibacters, nucleotide sequence data suggest that these are not alternative sources of Laf to citrus orchards, per se.


Phytotaxa ◽  
2013 ◽  
Vol 88 (3) ◽  
pp. 49 ◽  
Author(s):  
KUN GENG ◽  
BIN ZHANG ◽  
YU SONG ◽  
KEVIN D. HYDE ◽  
JI-CHUAN KANG ◽  
...  

A new species, Pestalotiopsis licualacola, was isolated from grey leafspots of Licuala grandis (ruffled fan palm). It is morphologically distinct in having relatively small, greyish brown conidia (16–20 × 3–5 μm), and 1–3 short apical appendages without knobs. Phylogenetic analysis based on combination of ITS, β-tubulin and tef1 gene sequence data clearly distinguishes P. licualacola from other species in this genus, with ex-type sequence data in GenBank. Based on morphology and molecular phylogeny we describe it as a new species.


Zootaxa ◽  
2007 ◽  
Vol 1461 (1) ◽  
pp. 25-37 ◽  
Author(s):  
SERGEY A. BELOKOBYLSKIJ ◽  
ALEJANDRO ZALDIVAR-RIVERÓN ◽  
VIRGINIA LEÓN-REGAGNON ◽  
DONALD L.J. QUICKE

A new genus and species of Lysitermini, Atritermus pedestris Belokobylskij, Zaldivar-Riverón & Quicke, are described from Madagascar. The taxonomic placement of the new genus within Lysiterminae is discussed based on a phylogenetic analysis using 28S rDNA gene sequences. A key to world genera of Lysitermini is provided.Un nuevo género y especie de Lysitermini, Atritermus pedestris Belokobylskij, Zaldivar-Riverón & Quicke, son descritos para Madagascar. La ubicación taxonómica del nuevo género dentro de Lysiterminae es discutida con base en un análisis filogenético usando secuencias del gen ribosomal 28S. Se presenta una clave para los géneros de Lysitermini del mundo.


Sign in / Sign up

Export Citation Format

Share Document