scholarly journals First Report of Downy Mildew on Nursery-Grown Hellebore Caused by Peronospora pulveracea in California

Plant Disease ◽  
2009 ◽  
Vol 93 (3) ◽  
pp. 319-319 ◽  
Author(s):  
C. Y. Warfield ◽  
C. L. Blomquist ◽  
E. E. Lovig

Hellebore or Lenten rose (Helleborus × hybridus) is an evergreen, herbaceous perennial in the family Ranunculaceae. Hellebores are sold as decorative, potted plants and as shade-loving landscape plants favored for their attractive and prolonged blooms in late winter or early spring. In April of 2008, downy mildew-like growth was observed on the foliage of approximately 60 containerized plants of Helleborus ‘Blue Lady’, ‘Pink Lady’, ‘White Lady’, and ‘Royal Heritage’ grown outdoors in a retail nursery in coastal San Mateo County, California. Infected foliage had angular, vein-delimited, dark brown-to-black speckled lesions on adaxial leaf surfaces turning dry and necrotic with age. Young leaves were small and distorted. Affected flowers were spotted and brown. The abaxial sides of affected leaves had light brown-to-purplish downy mildew-like growth. Subhyaline conidia, globose to ellipsoid in shape, ranged from 25 to 31 × 17 to 24 μm (average 28 × 21 μm). Conidiophores ranged from 265 to 375 × 5 to 11.5 μm (average 333 × 8.9 μm), branching dichotomously four to five times in the upper half. Morphological measurements fell within the range previously described for Peronospora pulveracea and P. alpicola, which were reported on Helleborus spp. and Ranunculus aconitifolius, respectively (1,2). DNA sequence of the internal transcribed spacer region of rDNA of our isolate (Genbank Accession No. FJ384778) matched sequences of P. pulveracea (Genbank Accession No. AY198270) and P. alpicola (Genbank Accession No. AY198271) with 100% identity. These two organisms are taxonomically indistinguishable by rDNA sequences and are likely to be the same species (3). To our knowledge, this is the first report of P. pulveracea on Helleborus × hybridus in California and the United States. Lenten rose is commercially propagated by seed, which is a potential pathway for introduction of this pathogen. Mature plants are sold and shipped intra- and interstate as decorative flowering plants or nursery stock. The importance and economic impact of this disease is limited, but significant economic losses could occur during production. References: (1) E. A. Gäumann. Beitr. Kryptogamenflora Schweiz 5:113, 1923. (2) G. Hall. Mycopathologia 126:57, 1994. (3) H. Voglmayr. Mycol. Res. 107:1132, 2003.

Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 696-696 ◽  
Author(s):  
J. A. Crouch ◽  
M. P. Ko ◽  
J. M. McKemy

Downy mildew of impatiens (Impatiens walleriana Hook.f.) was first reported from the continental United States in 2004. In 2011 to 2012, severe and widespread outbreaks were documented across the United States mainland, resulting in considerable economic losses. On May 5, 2013, downy mildew disease symptoms were observed from I. walleriana ‘Super Elfin’ at a retail nursery in Mililani, on the Hawai'ian island of Oahu. Throughout May and June 2013, additional sightings of the disease were documented from the islands of Oahu, Kauai, Maui, and Hawai'i from nurseries, home gardens, and botanical park and landscape plantings. Symptoms of infected plants initially showed downward leaf curl, followed by a stippled chlorotic appearance on the adaxial leaf surfaces. Abaxial leaf surfaces were covered with a layer of white mycelia. Affected plants exhibited defoliation, flower drop, and stem rot as the disease progressed. Based on morphological and molecular data, the organism was identified as Plasmopara obducens (J. Schröt.) J. Schröt. Microscopic observation disclosed coenocytic mycelium and hyaline, thin-walled, tree-like (monopodial branches), straight, 94.0 to 300.0 × 3.2 to 10.8 μm sporangiophores. Ovoid, hyaline sporangia measuring 11.0 to 14.6 × 12.2 to 16.2 (average 13.2 × 14.7) μm were borne on sterigma tips of rigid branchlets (8.0 to 15.0 μm) at right angle to the main axis of the sporangiophores (1,3). Molecular identification of the pathogen was conducted by removing hyphae from the surface of three heavily infected leaves using sterile tweezers, then extracting DNA using the QIAGEN Plant DNA kit (QIAGEN, Gaithersburg, MD). The nuclear rDNA internal transcribed spacer was sequenced from each of the three samples bidirectionally from Illustra EXOStar (GE Healthcare, Piscataway, NJ) purified amplicon generated from primers ITS1-O and LR-0R (4). Resultant sequences (GenBank KF366378 to 80) shared 99 to 100% nucleotide identity with P. obducens accession DQ665666 (4). A voucher specimen (BPI892676) was deposited in the U.S. National Fungus Collections, Beltsville, MD. Pathogenicity tests were performed by spraying 6-week-old impatiens plants (I. walleriana var. Super Elfin) grown singly in 4-inch pots with a suspension of 1 × 104 P. obducens sporangia/ml until runoff using a handheld atomizer. Control plants were sprayed with distilled water. The plants were kept in high humidity by covering with black plastic bags for 48 h at 20°C, and then maintained in the greenhouse (night/day temperature of 20/24°C). The first symptoms (downward curling and chlorotic stippling of leaves) and sporulation of the pathogen on under-leaf surfaces of the inoculated plants appeared at 10 days and 21 days after inoculation, respectively. Control plants remained healthy. Morphological features and measurements matched those of the original inoculum, thus fulfilling Koch's postulates. To our knowledge, this is the first report of downy mildew on I. walleriana in Hawai'i (2). The disease appears to be widespread throughout the islands and is likely to cause considerable losses in Hawai'ian landscapes and production settings. References: (1) O. Constantinescu. Mycologia 83:473, 1991. (2) D. F. Farr and A. Y. Rossman. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ July 16, 2013. (3) P. A. Saccardo. Syllogue Fungorum 7:242, 1888. (4) M. Thines. Fungal Genet Biol 44:199, 2007.


Plant Disease ◽  
2004 ◽  
Vol 88 (1) ◽  
pp. 84-84 ◽  
Author(s):  
B. M. Irish ◽  
J. C. Correll ◽  
R. N. Raid ◽  
T. E. Morelock

Downy mildew, caused by Peronospora farinosa f. sp. spinaciae, is an economically important disease in most areas where spinach is grown. This disease has become increasingly important in production fields for prepackaged salad mixes where plant densities typically are very high. In Florida, spinach production for these markets has reached approximately 200 ha. Currently, seven physiological races of the downy mildew pathogen have been described (1). Downy mildew was observed in several commercial spinach fields in the Everglades agricultural area of Palm Beach County, Florida in January 2003 on cvs. Unipak 151 and Merlo Nero. Symptoms appeared as chlorotic and necrotic leaf spots. Disease incidence reached approximately 25% in some field locations. Economic losses were significant, since entire plantings in several fields were not harvested as a result of diminished quality. The race of a field isolate recovered from the cv. Unipak 151 was determined following greenhouse inoculation procedures and using differentials outlined by Irish et al (1). Greenhouse inoculation tests were conducted twice. Disease reactions on a U.S. and international set of differentials indicated that the isolate was race 5. To our knowledge, this is the first report of race 5 occurring outside of the California/Arizona spinach production area in the United States. There are commercial spinach lines with resistance to race 5, as well as the other described races (1). References: (1) B. M. Irish et al. Plant Dis. 87:567, 2003.


Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 688-688 ◽  
Author(s):  
R. A. Choudhury ◽  
P. Modi ◽  
J. Hanstad ◽  
R. Elkins ◽  
W. D. Gubler

California produces 26% of the United States pear crop on approximately 5,600 ha. A survey of seven northern California pear orchards (Pyrus communis cv. Bartlett) in summer 2010 revealed the presence of wedge-shaped cankers on 2- to 5-cm diameter branches, equating to 1- to 3-year-old wood. Many of the observed cankers occurred near pruning wounds, and there was decreased foliation on infected branches. Infected wood was surface disinfected with 95% ethanol and briefly flamed. After removing bark, small sections of diseased tissue were plated onto 4% potato dextrose agar (PDA) amended with 0.01% tetracycline and placed on the lab bench at 22°C until fungal growth emerged. Fungal colonies that were consistently isolated were transferred to fresh PDA using hyphal tip isolation. Fungal colonies were dark brown to gray with aerial mycelium and formed pycnidia after 15 days of incubation at 22°C. Conidia were brown, oval to oblong, and measured (16.5-) 20 to 24 (-26) × (7.5) 8.75 to 11 (-12.5) μm (n = 50). DNA from 14- to 21-day-old colonies was extracted and sequences of the rDNA internal transcribed spacer region and part of the β-tubulin gene were amplified using primers ITS4/ITS5 and Bt2a/Bt2b, respectively (2). The DNA sequences of fungal isolates from California showed 99 to 100% homology with the ex-type Diplodia seriata De Not. (1) CBS112555 deposited in GenBank. DNA sequences from three California isolates were submitted to GenBank with accession numbers KC937062, KC937065, KF481957, KF481598, KF481959, and KF481960. Pathogenicity tests were performed in March 2011 on 3-year-old Bartlett pear trees planted at an experimental farm in Davis, CA. A single, circular, 2-cm pruning wound at the top of the trunk was inoculated on each of three single-tree replications using 2-cm mycelial plugs from 14-day-old colonies growing on PDA. After inoculation, mycelial plugs were covered and sealed with Parafilm and aluminum foil for the duration of the trial. Three control trees were inoculated using sterile PDA plugs. Twelve months after inoculation, UCD103 and UCD105 were consistently re-isolated from the margin between necrotic and healthy tissue using the same methods described for the original isolation, and UCD102 was re-isolated in two out of three plants. The average lesion lengths of UCD102, UCD103, UCD105, and control plants were 12.5, 17.3, 23, and 1 mm, respectively. Control lesions were short and sterile, and seemed to be a physiological reaction from the plant. A second pathogenicity test was completed in 5 months beginning in June 2012. UCD105 was consistently re-isolated, and UCD102 and UCD103 were re-isolated in two out of three plants. The average lesion lengths for UCD102, UCD103, UCD105, and control plants were 2, 3, 5, and 1 mm, respectively. Compared to grapevine (Vitis vinifera), the pathogen grows more slowly in pear tissue under natural conditions. To our knowledge, this is the first report describing D. seriata as a causal agent of pear branch canker in California. Canker diseases can reduce the lifespan of perennial plants, ultimately leading to long term economic losses for growers (3). References: (1) A. J. L. Phillips et al. Fungal Diversity 25:141, 2007. (2) J. R. Urbez-Torres et al. Plant Dis. 90:1490, 2006. (3) J. R. Urbez-Torres and W. D. Gubler. Plant Dis. 93:584, 2009.


Plant Disease ◽  
2002 ◽  
Vol 86 (1) ◽  
pp. 71-71
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
M. L. Gullino

The production of potted ornamental plants is very important in the Albenga Region of northern Italy, where plants are grown for export to central and northern Europe. During fall 2000 and spring 2001, sudden wilt of tussock bellflower (Campanula carpatica Jacq.) and butterfly flower (Schizanthus × wisetonensis Hort.) was observed on potted plants in a commercial greenhouse. Initial symptoms included stem necrosis at the soil line and yellowing and tan discoloration of the lower leaves. As stem necrosis progressed, infected plants growing in a peat, bark compost, and clay mixture (70-20-10) wilted and died. Necrotic tissues were covered with whitish mycelia that produced dark, spherical (2 to 6 mm diameter) sclerotia. Sclerotinia sclerotiorum was consistently recovered from symptomatic stem pieces of both plants disinfested for 1 min in 1% NaOCl and plated on potato dextrose agar amended with streptomycin sulphate at 100 ppm. Pathogenicity of three isolates obtained from each crop was confirmed by inoculating 45- to 60-day-old C. carpatica and Schizanthus × wisetonensis plants grown in containers (14 cm diameter). Inoculum that consisted of wheat kernels infested with mycelia and sclerotia of each isolate was placed on the soil surface around the base of previously artificially wounded or nonwounded plants. Noninoculated plants served as controls. All plants were maintained outdoors where temperatures ranged between 8 and 15°C. Inoculated plants developed symptoms of leaf yellowing, followed by wilt, within 7 to 10 days, while control plants remained symptomless. White mycelia and sclerotia developed on infected tissues and S. sclerotiorum was reisolated from inoculated plants. To our knowledge, this is the first report of stem blight of C. carpatica and Schizanthus × wisetonensis caused by S. sclerotiorum in Italy. The disease was previously observed on C. carpatica in Great Britain (2) and on Schizanthus sp. in the United States (1). References: (1) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989. (2) J. Rees. Welsh J. Agric. 1:188, 1925.


Plant Disease ◽  
2007 ◽  
Vol 91 (10) ◽  
pp. 1360-1360
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
M. L. Gullino

Oreganum vulgare (wild marjoram) and Taraxacum officinale (dandelion) plants with culinary and medicinal uses are grown in the field and as potted plants in Liguria in northern Italy. In the spring of 2006, extensive chlorosis was observed on both crops on commercial farms. Economic losses were low. Symptoms included foliar necrosis and a watery decay of the stem at the soil level. Necrotic tissues became covered with a whitish mycelium that produced dark sclerotia. Eventually, affected plants wilted and died. Samples of diseased stem tissue were surface sterilized for 1 min in 1% NaOCl and plated on potato dextrose agar (PDA) amended with 100 mg/l of streptomycin sulfate. Sclerotinia sclerotiorum (Lib.) de Bary (1) was consistently recovered from diseased stem pieces. Sclerotia from infected O. vulgare plants measured 1.8 to 3.4 × 1.8 to 6.1 (average 2.5 to 3.6) mm. Sclerotia from these isolates measured 1.3 to 4.7 × 1.6 to 6.1 (average 2.7 to 3.4) mm on PDA. Sclerotia from infected T. officinale plants measured 1.8 to 3.4 × 1.8 to 6.1 (average 2.5 to 3.6) mm. Sclerotia from these isolates measured 1.7 to 5.2 × 2.0 to 5.7 (average 3.3 to 3.8) mm on PDA. Pathogenicity of three isolates obtained from O. vulgare and three isolates from T. officinale was confirmed on each host. Inoculum consisted of 1 cm2 of mycelial plugs excised from a 10-day-old PDA culture of each isolate. Plants were inoculated by placing a mycelial plug on the soil surface around the base of each plant. Ten plants were inoculated per isolate and an equal number of noninoculated plants served as controls. Plants were incubated at 10 to 27°C (average 18°C) and watered as needed. Pathogenicity tests were repeated once. All inoculated plants developed chlorosis within 12 to 18 days, followed by the appearance of white mycelium and sclerotia, and eventually wilt. Control plants remained symptomless. S. sclerotiorum was reisolated from inoculated plants of both hosts. To our knowledge, this is the first report of white mold on O. vulgare in Italy as well as worldwide and the first report of white mold on T. officinale in Italy. S. sclerotiorum is a well known pathogen of T. officinale (2) and its use as a mycoherbicide has been proposed (3). References: (1) N. F. Buchwald. Page 75. Den. Kgl. Veterin.er-og Landbohojskoles Aarsskrift, 1949. (2) D. M. McLean. Plant Dis. Rep. 35:162, 1951 (3) G. E. Riddle et al. Weed Sci. 39:109, 1991.


Plant Disease ◽  
2012 ◽  
Vol 96 (2) ◽  
pp. 287-287
Author(s):  
K. S. Han ◽  
J. H. Park ◽  
S. E. Cho ◽  
H. D. Shin

Pachysandra terminalis Siebold & Zucc., known as Japanese pachysandra, is a creeping evergreen perennial belonging to the family Buxaceae. In April 2011, hundreds of plants showing symptoms of leaf blight and stem canker with nearly 100% incidence were found in a private garden in Suwon, Korea. Plants with the same symptoms were found in Seoul in May and Hongcheon in August. Affected leaves contained tan-to-yellow brown blotches. Stem and stolon cankers first appeared as water soaked and developed into necrotic lesions. Sporodochia were solitary, erumpent, circular, 50 to 150 μm in diameter, salmon-colored, pink-orange when wet, and with or without setae. Setae were hyaline, acicular, 60 to 100 μm long, and had a base that was 4 to 6 μm wide. Conidiophores were in a dense fascicle, not branched, hyaline, aseptate or uniseptate, and 8 to 20 × 2 to 3.5 μm. Conidia were long, ellipsoid to cylindric, fusiform, rounded at the apex, subtruncate at the base, straight to slightly bent, guttulate, hyaline, aseptate, 11 to 26 × 2.5 to 4.0 μm. A single-conidial isolate formed cream-colored colonies that turned into salmon-colored colonies on potato dextrose agar (PDA). Morphological and cultural characteristics of the fungus were consistent with previous reports of Pseudonectria pachysandricola B.O. Dodge (1,3,4). Voucher specimens were housed at Korea University (KUS). Two isolates, KACC46110 (ex KUS-F25663) and KACC46111 (ex KUS-F25683), were accessioned in the Korean Agricultural Culture Collection. Fungal DNA was extracted with DNeasy Plant Mini DNA Extraction Kits (Qiagen Inc., Valencia, CA). The complete internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced using ABI Prism 337 automatic DNA sequencer (Applied Biosystems, Foster, CA). The resulting sequence of 487 bp was deposited in GenBank (Accession No. JN797821). This showed 100% similarity with a sequence of P. pachysandricola from the United States (HQ897807). Isolate KACC46110 was used in pathogenicity tests. Inoculum was prepared by harvesting conidia from 2-week-old cultures on PDA. Ten young leaves wounded with needles were sprayed with conidial suspensions (~1 × 106 conidia/ml). Ten young leaves that served as the control were treated with sterile distilled water. Plants were covered with plastic bags to maintain a relative humidity of 100% at 25 ± 2°C for 24 h. Typical symptoms of brown spots appeared on the inoculated leaves 4 days after inoculation and were identical to the ones observed in the field. P. pachysandricola was reisolated from 10 symptomatic leaf tissues, confirming Koch's postulates. No symptoms were observed on control plants. Previously, the disease was reported in the United States, Britain, Japan, and the Czech Republic (2,3), but not in Korea. To our knowledge, this is the first report of P. pachysandricola on Pachysandra terminalis in Korea. Since this plant is popular and widely planted in Korea, this disease could cause significant damage to nurseries and the landscape. References: (1) B. O. Dodge. Mycologia 36:532, 1944. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , September 24, 2011. (3) I. Safrankova. Plant Prot. Sci. 43:10, 2007. (4) W. A. Sinclair and H. H. Lyon. Disease of Trees and Shrubs. 2nd ed. Cornell University Press, Ithaca, NY, 2005.


Plant Disease ◽  
2012 ◽  
Vol 96 (7) ◽  
pp. 1068-1068 ◽  
Author(s):  
Y. I. Chew-Madinaveitia ◽  
A. Gaytán-Mascorro ◽  
T. Herrera-Pérez

In 2009, 2010, and 2011, melon plants (Cucumis melo L.) exhibited vine decline in commercial fields in the Municipality of Viesca, State of Coahuila, in the north-central region of Mexico known as La Comarca Lagunera. Symptoms included wilting, leaf yellowing, and vine collapse prior to harvest. Diseased plants showed necrotic root lesions and loss of secondary and tertiary roots. Numerous perithecia containing asci and ascospores typical of Monosporascus cannonballus Pollack & Uecker (3) were found in the root system. M. cannonballus is a typical fungus of hot semiarid climates such as La Comarca Lagunera in which daytime temperatures above 40°C are frequent during the melon growing season. Small root pieces were disinfected with 1.5% sodium hypochlorite for 1 min and plated onto potato dextrose agar (PDA) medium with 0.5 g l–1 streptomycin sulfate and incubated for 7 days at 25°C under dark conditions. The mycelium of the fungus colony was initially white, turning gray about 3 weeks later and yielding black perithecia with one ascospore per asci. The internal transcribed spacer region of ribosomal DNA of isolate 4 was sequenced and submitted to GenBank with Accession No. JQ51935. Pathogenicity of this isolate was confirmed on melon plants (cv. Cruiser) in the greenhouse at 25 to 32°C. Fungus inoculum was produced in a sand-oat hull medium (0.5 l of sand, 45 g of oat hulls, and 100 ml of distilled water), and incubated at 25°C for 50 days (1). Melon seeds were sown in sterile sand in 20-cm diameter and 12-cm depth polyurethane containers, and the inoculum was added to produce a concentration of 20 CFU g–1. Sowing was done in five inoculated containers and thinned to two plants per container, each container representing a replication. Plants were also grown in five noninoculated containers that were used as controls. After 50 days under greenhouse conditions, plants were evaluated for disease symptoms. Melon plants inoculated with M. cannonballus exhibited root necrosis as opposed to healthy roots observed in noninoculated plants. M. cannonballus was reisolated from symptomatic plants, confirming Koch's postulates. M. cannonballus causes root rot and vine decline on melon and has been reported in Brazil, Guatemala, Honduras, India, Iran, Israel, Italy, Japan, Libya, the Netherlands (plants from Russia), Pakistan, Saudi Arabia, Spain, Taiwan, Tunisia, and the United States. M. cannonballus was reported in 1996 in southeastern Mexico in the State of Colima, where watermelon (Citrullus lanatus (Thunb.) Matsum.& Nakai) showed wilting and plant collapse prior to harvest (2). However, to our knowledge, this is the first report of M. cannonballus on melon in Mexico. This is relevant because La Comarca Lagunera region is one of the major melon producing areas in Mexico and M. cannonballus is a pathogen that may cause yield losses of up to 100%. References: (1) B. D. Bruton et al. Plant Dis. 84:907, 2000. (2) R. D. Martyn et al. Plant Dis. 80:1430, 1996. (3) F. G. Pollack and F. A. Uecker. Mycologia 66:346, 1974.


Plant Disease ◽  
2010 ◽  
Vol 94 (7) ◽  
pp. 924-924 ◽  
Author(s):  
C. Hernandez-Zepeda ◽  
T. Isakeit ◽  
A. Scott ◽  
J. K. Brown

During the okra growing season from August to November of 2009, symptoms reminiscent of geminivirus infection were observed on 75% of ‘Green Emerald’ Abelmoschus esculentus (L.) Moench, plants in a 0.2-km2 field in Hidalgo County, TX. Visible symptoms consisted of irregular yellow patches on leaves, distinctive yellow borders on leaf edges, and chlorosis of subsequently developing leaves. The whitefly vector of begomoviruses, Bemisia tabaci (Genn.), infested okra plants in the early growth stages during late July 2009. Total DNA was isolated from the leaves of three symptomatic okra plant samples (1) and used as the PCR template to amplify a 575-bp fragment of the coat protein gene (CP) using the universal begomovirus primers AV494 and AC1048 (2). PCR products of the expected size were cloned into the pGEM-T Easy (Promega, Madison, WI) and sequenced using the universal M13F and M13 R primers. ClustalV alignment indicated 99 to 100% shared nucleotide (nt) identity, and BLAST analysis revealed that the closest relative was Okra yellow mosaic Mexico virus - Tetekalitla (OkYMMV) (GenBank Accession No. EF591631) at 98%. To amplify the full-length DNA-A and a possible cognate DNA-B component, one plant that was positive by CP-PCR and DNA sequencing was selected for further analysis. Total DNA from this plant was used as template for a second detection method that consisted of rolling circle amplification (RCA) using the TempliPhi 100 Amplification System (GE Healthcare). RCA is a non-sequence-specific approach that permits amplification of circular DNA. The RCA products were linearized to release unit length ~2.6 kb DNA-A and DNA-B components using BamHI, and EcoRI, respectively. These products were cloned into pGEM3zf+ (Promega) and sequenced using M13F and M13 R primers and then by primer walking (>300 base overlap). Full-length DNA-A and DNA-B components were obtained, respectively, at 2,613 bp (GenBank Accession No. HM035059) and 2,594 bp (GenBank Accession No HM035060). Alignment of the DNA-A component using ClustalV (MegAlign, DNASTAR, Madison, WI) with begomoviral sequences available in GenBank indicated that it was 99% identical to OkYMMV DNA-A (GenBank Accession No. DQ022611). The closest relative to the DNA-B component (ClustalV) was Sida golden mosaic virus (SiGMV) (GenBank Accession No. AJ250731) at 73%. The nt identity of the 172-nt ‘common region’ present in the DNA-A and DNA-B components was 99%, and the iterons (predicted Rep binding motif) were identical for the two components, indicating that they are a cognate pair. The genome organization was typical of other New World bipartite begomoviruses. The economic losses due to infection by this virus could not be determined because an early freeze killed the plants. Hidalgo County is adjacent to Tamaulipas, Mexico, where ~50 km2 of okra are grown and the whitefly vector is also present. The identification of OkYMMV based on two independent detection methods, and the presence of begomovirus-like symptoms together with the whitefly vector, provide robust evidence for the association of OkYMMV-TX with diseased okra plants. To our knowledge, this is the first report of OkYMMV-TX infecting okra crops in Texas and in the continental United States. References: (1) J. J. Doyle and J. L. Doyle. Focus 12:13, 1990. (2) S. Wyatt and J. K. Brown. Phytopathology 86:1288, 1996.


Plant Disease ◽  
2014 ◽  
Vol 98 (11) ◽  
pp. 1579-1579 ◽  
Author(s):  
I. Šafránková ◽  
L. Holková

Sweet basil (Ocimum basilicum L.) is an aromatic plant that is cultivated as a pot plant in greenhouses or in fields in the Czech Republic. The plants are intended for direct consumption or for drying. In April of 2012, the first large chlorotic from the middle necrotic spots occurred gradually on leaves of pot plants O. basilicum cv. Genovese in greenhouses in Central Bohemia. The characteristic gray to brown furry growth of downy mildew appeared on abaxial surfaces of leaves in the place of chlorotic spots within 3 to 4 days. The infested leaves fell off in the late stages of pathogenesis. The infestation gradually manifested itself in ever-younger plants and in July, cotyledons and possibly the first true leaves were already heavily infected and damaged and these plants rapidly died. The plant damage reached 80 to 100%, so it was necessary to stop growing the plants in the greenhouse at the end of July. The causal agent was isolated and identified as Peronospora belbahrii Thines by means of morphological and molecular characters (2,3). Conidiophores were hyaline, straight, monopodial, 280 to 460 μm, branched three to five times, ended with two slightly curved branchlets with a single conidia on each branchled tip. The longer branchlets measured 13 to 24 μm (average 18.2 μm), the shorter one 4 to 15 μm (average 9.7 μm). Conidia were rounded or slightly ovoid, from brownish to dark brownish, measured 22 to 31 × 20 to 28 μm (length/width ratio 1.2). A pathogen-specific sequence was detected with the help of the pathogen ITS rDNA specific primers in symptomatic leaves (1). DNA from plant tissues was isolated using the DNeasy plant Mini Kit (Qiagen, Germany) following the standard protocol. PCR was performed using KAPA2G Robust HotStar kit (Kapa Biosystems, United States) according to the conditions recommended in Belbahri et al. (1). The specific products were visualized by electrophoresis through 1.5% agarose gels. Leaves of 20-day-old potted plants O. basilicum ‘Genovese’ were inoculated by spraying with 5 × 105 conidia/ml of the pathogen. Each pot contained 10 plants. Sterilized distilled water was applied to control plants. Plants were covered with polyethylene bags during the entire incubation period to maintain high humidity, and kept at a temperature of 22 to 24°C. Typical disease symptoms appeared on leaves 5 to 9 days after inoculation. Control plants were symptomless. P. belbahrii was re-isolated from the lesions of inoculated plants, thus fulfilling Koch's postulates. Downy mildew on sweet basil was reported in countries in Africa, Europe, and South and North America (4). To our knowledge, this is the first report of downy mildew on sweet basil in the Czech Republic. References: (1) L. Belbahri et al. Mycol. Res. 109:1276, 2005. (2) Y.-J. Choi et al. Mycol. Res. 113:1340, 2009. (3) M. Thines et al. Mycol. Res. 113:532, 2009. (4) C. A. Wyenandt et al. HortScience 45:1416, 2010.


Plant Disease ◽  
2004 ◽  
Vol 88 (8) ◽  
pp. 909-909 ◽  
Author(s):  
S. N. Wegulo ◽  
S. T. Koike ◽  
M. Vilchez ◽  
P. Santos

During February 2004, diseased double impatiens (Impatiens walleriana) plants were received from a commercial grower in southern California. The upper surfaces of symptomatic leaves were pale yellow with no distinct lesions. Diseased leaves later wilted, and severely affected leaves abscised from the stem. At the nursery, only double impatiens plants in the Fiesta series were infected, and some cultivars were more heavily infected than others. Disease incidence in cv. Sparkler Hot pink was nearly 100%. The interior of infected leaves was colonized by coenocytic mycelium. A conspicuous white growth was observed only on the underside of leaves. Sporangiophores were hyaline, thin walled, emergent from stomata, and had slightly swollen bases. Sporangiophore branching was distinctly monopodial. Smaller sporangiophore branches were arranged at right angles to the supporting branches, and tips of branches measured 8 to 14 μm long. Sporangia were ovoid and hyaline with a single pore on the distal ends. Distal ends of sporangia were predominantly flat but occasionally had a slight papilla. Short pedicels were present on the attached ends. Sporangia measured 19.4 to 22.2 (-25.0) μm × 13.9 to 16.7 (-19.4) μm. Oospores were not observed in leaf tissue. On the basis of symptoms and morphology of the organism, the pathogen was identified as Plasmopara obducens J. Schröt. Pathogenicity tests were done on double type cvs. Fiesta, Tioga Red, and Tioga Cherry Red and on single type cvs. Cajun Watermelon and Accent Lilac. Plants were spray inoculated with sporangiospore suspensions (1 × 104 sporangiospores per milliliter), incubated for 24 h in a dew chamber (18 to 20°C), and then maintained in a greenhouse (22 to 24°C). Symptoms and signs of downy mildew developed after 12 days only on inoculated cv. Fiesta plants, and the pathogen morphology matched that of the originally observed pathogen. Nontreated control plants did not develop downy mildew. To our knowledge, this is the first report of downy mildew on impatiens in California. P. obducens is one of two causal agents of downy mildew of impatiens (2,4). The other pathogen, Bremiella sphaerosperma, has dichotomous sporangiophore branching and causes lesions with well-defined margins (2,4). In the United States, the disease has been recorded in the eastern and northeastern states and in Indiana, Minnesota, Mississippi, Montana, and Wisconsin (3). In Canada, the disease has been recorded in Manitoba and Quebec (1). References: (1) I. L. Conners. An Annotated Index of Plant Diseases in Canada and Fungi Recorded on Plants in Alaska, Canada, and Greenland. Research Branch, Canada Department of Agriculture, Publication 1251, 1967. (2) O. Constantinescu. Mycologia 83:473, 1991. (3) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, 1989. (4) G. W. Wilson. Bull. Torrey Bot. Club 34:387, 1907.


Sign in / Sign up

Export Citation Format

Share Document