scholarly journals First Report of Powdery Mildew of Greenhouse Pepper Caused by Leveillula taurica in Canada

Plant Disease ◽  
1999 ◽  
Vol 83 (8) ◽  
pp. 781-781 ◽  
Author(s):  
R. F. Cerkauskas ◽  
J. Brown ◽  
G. Ferguson ◽  
S. Khosla

In 1999, powdery mildew on cvs. Oberon and Triple 4 of greenhouse pepper (Capsicum annum L.) and cv. FireFlame of chili pepper was reported simultaneously in two commercial greenhouses at two separate locations, Leamington and Vineland, geographically separated by 290 km, in southern Ontario. Losses of 10 to 15% each in the 2 and 3.1 ha greenhouse pepper operations were noted. The greenhouse pepper industry in Canada consists of 89.4 ha with sales of $43.6 million (Canadian). Lesions appeared as a white, powdery coating on the abaxial leaf surface only, generally on the lower foliage of pepper plants, while diffuse chlorotic spots were present at corresponding locations on the adaxial surface. In chili pepper, this chlorosis was restricted to interveinal tissue, causing the leaves to have a somewhat netted appearance. In some cases, pale yellow spots appeared on the adaxial portion of the affected foliage during later stages of disease development. No cleistothecia were observed. Pyriform and cylindrical, hyaline, single-celled conidia were present in equal numbers. Both conidia had a network of crests and granules containing tiny, thornlike projections on the surface. These projections were also evident on the lower half of conidiophores. Pyriform conidia ranged in length from 61.6 to 84.0 μm (mean = 70.8, SE = 0.7) and in width from 14.0 to 25.8 μm (mean = 21.1, SE = 0.4, n = 50), with a mean length to width ratio of 3.4. Cylindrical conidia ranged in length from 54.9 to 80.1 μm (mean = 66.3, SE = 0.9) and in width from 15.7 to 24.1 μm (mean = 18.6, SE = 0.3, n = 50), with a mean length to width ratio of 3.1. Short conidial chains borne on conidiophores consisted of a pyriform conidium first followed by cylindrical conidium. Stomatal penetration and extensive endophytic mycelial growth in the mesophyll layer were evident in foliar tissue cleared with glacial acetic acid:EtOH (1:2) and stained with lactophenol cotton blue. To confirm pathogenicity, conidia from infected pepper leaves were dusted onto the water-misted abaxial leaf surface of 41-day-old greenhouse pepper cvs. Cubico and Edison, and onto the similarly treated adaxial leaf surface of 58-day-old field pepper cv. Renegade. Plants were enclosed in plastic bags for 24 h on a bench. Control plants were treated identically but not inoculated. Inoculated plants developed foliar powdery mildew symptoms, including sporulation similar to that of naturally infected plants. Occurrence of the fungus on the abaxial surface of pepper foliage, presence of endophytic mycelium, and the morphological characteristics of the imperfect state confirm the identity of the fungus. This is the first report of Leveillula taurica (Lév.) G. Arnaud on pepper in Canada. Reference: J. Palti. Bot. Rev. 54:423, 1988.

Plant Disease ◽  
2003 ◽  
Vol 87 (9) ◽  
pp. 1151-1151 ◽  
Author(s):  
R. F. Cerkauskas ◽  
A. Buonassisi

In 2003, powdery mildew of greenhouse pepper (Capsicum annuum L.) was reported simultaneously in two commercial greenhouses at two separate locations near Langley in southern British Columbia. Trace amounts of mildew on the foliage of cv. Zamboni in one operation, and 10 to 80% of the foliage of cv. Triple Four was affected in an organic operation, with losses in fruit yield of 2 to 4 kg/m2, were noted. The greenhouse pepper industry in British Columbia in 2001 comprised 76 ha with sales of $41.3 million (Canadian). Affected areas appeared as a white, powdery coating on the abaxial leaf surface of older foliage while diffuse chlorotic spots were present at corresponding locations on the adaxial surface. In some cases, pale yellow spots appeared on the adaxial portion of the affected foliage during later stages of disease development (2). Hyaline, single-celled pyriform and cylindrical conidia were present in 40:60 proportion, respectively. Both conidia had a network of crests and granules sometimes with tiny thorn-like projections on the surface. These projections were evident also on the lower half of conidiophores. Pyriform conidia ranged in length from 53.8 to 79.5 μm (mean = 68.0, SE = 0.8), and in width from 12.9 to 28.0 μm (mean = 20.1, SE = 0.6, n = 50) with a mean length to width ratio of 3.5. Cylindrical conidia had a length from 48.2 to 84.0 μm (mean = 66.0, SE = 0.9), and in width from 13.4 to 25.2 μm (mean = 18.6, SE = 0.4, n = 50) with a mean length to width ratio of 3.6. Short conidial chains borne on conidiophores consisted of a basal pyriform conidium followed by cylindrical conidium. No cleistothecia were observed. Stomatal penetration and extensive endophytic mycelial growth in the mesophyll layer were evident in foliar tissue cleared with glacial acetic acid/EtOH (1:2) and stained with lactophenol cotton blue. To confirm pathogenicity, a suspension of 2 × 104 conidia/ml from infected pepper leaves was applied onto the abaxial and adaxial leaf surfaces of 60-, 42-, and 28-day-old greenhouse pepper cv. Cubico, tomato cv. Trust, and cucumber cv. Corona, respectively. Plants were maintained in a growth chamber at 25/21°C day/night temperature and 80% relative humidity. Control plants in the same chamber were treated identically but not inoculated. After 21 days, inoculated pepper plants developed foliar powdery mildew symptoms on the abaxial surface, including sporulation similar to that of naturally infected plants. Occurrence of the fungus on the abaxial surface of pepper foliage, presence of endophytic mycelium, and the morphological characteristics of the imperfect state confirm the identity of the fungus (2). To our knowledge, this is the first report of Leveillula taurica (Lév.) G. Arnaud on pepper in British Columbia. The disease was first reported in Ontario, Canada in 1999 (1). References: (1) R. Cerkauskas et al. Plant Dis. 83:781,1999. (2) J. Palti. Bot. Rev. 54:423, 1988.


Plant Disease ◽  
2001 ◽  
Vol 85 (8) ◽  
pp. 923-923
Author(s):  
W. J. Swart ◽  
J. Terblanche

Kenaf (Hibiscus cannabinus L.) is a fast-growing, bamboo-like annual plant belonging to the Malvaceae. The stem, which ranges from 1.5 to 4 m, presents a source of high-quality cellulose fibers. The plant is being investigated in South Africa with a view to commercial production. In April 2001, at least 50% of 4- to 5-month-old kenaf plants grown from seed in trials near Rustenburg, Northwest Province, South Africa, were observed as having powdery mildew. Signs included extensive growth of white, superficial mycelium and emergent conidiophores on the abaxial leaf surface, followed by partial defoliation. On older leaves, the abaxial leaf surface was completely covered by powdery mildew, and chlorotic and necrotic patches were clearly visible on the adaxial surface. Symptoms were observed on all five planted cultivars (Everglades 41, Cuba 108, El Salvador, SF459, and Tainung 2), and no difference in disease severity was noted among cultivars. Leveillula taurica (Lév.) Arnaud (anamorph Oidiopsis taurica [Lév.] Salmon) was subsequently identified by the presence of endophytic mycelia, often branched conidiophores, and dimorphic conidia borne singly or in short chains (1). In 100 measurements of each type, pyriform conidia averaged 69 ± 5 × 18 ± 2 μm and cylindrical conidia averaged 62 ± 6 × 16 ± 2 μm. The teleomorph was not observed. The source of L. taurica for this reported outbreak is unknown, and powdery mildew was not observed in a field of mature cotton (Gossypium hirsutum L.) growing within 10 m of the kenaf plot. L. taurica was reported on kenaf in Texas in 1992 (2) and in Italy in 1995 (3). The pathogen can cause significant losses in seed yield and reduce seed quality in susceptible kenaf cultivars. Although L. taurica has been reported from Hibiscus sabdariffa in Egypt (4), to our knowledge this is the first report of the pathogen occurring on kenaf in Africa. References: (1) H. J. Boesewinkel. Bot Rev. 46:167, 1980. (2) C. G. Cook and J. L. Riggs. Plant Dis. 79:968, 1995. (3) S. Frisullo et al. Inf. Fitopatol. 45:37–41, 1995. (4) M. Khairy, et al. Phytopathol. Medit. 10:269–271, 1971.


Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1278-1278 ◽  
Author(s):  
S. E. Cho ◽  
J. H. Park ◽  
S. H. Hong ◽  
I. Y. Choi ◽  
H. D. Shin

Agastache rugosa (Fisch. & C.A. Mey.) Kuntze, known as Korean mint, is an aromatic plant in the Lamiaceae. It is widely distributed in East Asian countries and is used as a Chinese traditional medicine. In Korea, fresh leaves are commonly added to fish soups and stews (3). In November 2008, several dozen Korean mints plants growing outdoors in Gimhae City, Korea, were found to be severely infected with a powdery mildew. The same symptoms had been observed in Korean mint plots in Busan and Miryang cities from 2008 to 2013. Symptoms first appeared as thin white colonies, which subsequently developed into abundant hyphal growth on stems and both sides of the leaves. Severe disease pressure caused withering and senescence of the leaves. Voucher specimens (n = 5) were deposited in the Korea University Herbarium (KUS). Appressoria on the mycelium were nipple-shaped or nearly absent. Conidiophores were 105 to 188 × 10 to 13 μm and produced 2 to 4 immature conidia in chains with a sinuate outline, followed by 2 to 3 cells. Foot-cells of the conidiophores were straight, cylindrical, slightly constricted at the base, and 37 to 58 μm long. Conidia were hyaline, ellipsoid to barrel-shaped, measured 25 to 40 × 15 to 23 μm (length/width ratio = 1.4 to 2.1), lacked distinct fibrosin bodies, and showed reticulate wrinkling of the outer walls. Primary conidia were obconically rounded at the apex and subtruncate at the base. Germ tubes were produced at the perihilar position of conidia. No chasmothecia were observed. The structures described above were typical of the Oidium subgenus Reticuloidium anamorph of the genus Golovinomyces. The measurements and morphological characteristics were compatible with those of G. biocellatus (Ehrenb.) V.P. Heluta (1). To confirm the identification, molecular analysis of the sequence of the internal transcribed spacer (ITS) region of ribosomal DNA (rDNA) of isolate KUS-F27200 was conducted. The complete ITS rDNA sequence was amplified using primers ITS5 and P3 (4). The resulting 514-bp sequence was deposited in GenBank (Accession No. KJ585415). A GenBank BLAST search of the Korean isolate sequence showed >99% similarity with the ITS sequence of many G. biocellatus isolates on plants in the Lamiaceae (e.g., Accession Nos. AB307669, AB769437, and JQ340358). Pathogenicity was confirmed by gently pressing diseased leaf onto leaves of five healthy, potted Korean mint plants. Five non-inoculated plants served as a control treatment. Inoculated plants developed symptoms after 7 days, whereas the control plants remained symptomless. The fungus present on inoculated plants was identical morphologically to that observed on the original diseased plants. The pathogenicity test was repeated with identical results. A powdery mildew on A. rugosa caused by G. biocellatus was reported from Romania (2). To our knowledge, this is the first report of powdery mildew caused by G. biocellatus on A. rugosa in Korea. The plant is mostly grown using organic farming methods with limited chemical control options. Therefore, alternative control measures should be considered. References: (1) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No. 11. CBS, Utrecht, 2012. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Syst. Mycol. Microbiol. Lab., online publication, USDA ARS, retrieved 17 February 2014. (3) T. H. Kim et al. J. Sci. Food Agric. 81:569, 2001. (4) S. Takamatsu et al. Mycol. Res. 113:117, 2009.


Plant Disease ◽  
2011 ◽  
Vol 95 (9) ◽  
pp. 1188-1188 ◽  
Author(s):  
J.-G. Tsay ◽  
R.-S. Chen ◽  
H.-L. Wang ◽  
W.-L. Wang ◽  
B.-C. Weng

Powdery mildew can be found in most papaya (Carica papaya L.) fields during the winter and spring seasons in Taiwan. It usually causes severe yellowing of the leaf lamina and petiole and serious defoliation. Three types of powdery mildew fungi were isolated from papaya leaves in Chiayi City (23.28°N, 120.28°E) at the beginning of 2008. Conidia of the first one were single, globose, hyaline, and 24 to 36 × 14 to 18 μm (average 30.2 × 15.6 μm) without fibrosin bodies and with straight or occasionally flexuous conidiophores at the base. The second one had short pseudo-chains of two to four conidia which were ellipsoidal to ovoid, hyaline, and 24 to 40 × 12 to 16 μm (average 29.7 × 13.4 μm) without fibrosin bodies. The third type had chains of ellipsoidal conidia that were hyaline, 24 to 28 × 12 to 16 μm (average 26.3 × 14.4 μm) and contained fibrosin bodies. To confirm the identity of the three fungi, the internal transcribed spacer (ITS) region of rDNA was amplified using the primer pairs G1 (5′-TCC GTA GGT GAA CCT GCG GAA GGA T-3′)/Ed2 (5′-CGC GTA GAG CCC ACG TCG GA-3′), G1 (5′-TCC GTA GGT GAA CCT GCG GAA GGA T-3′)/On2 (5′-TGT GAT CCA TGT GAC TGG AA-3′), and S1 (5′-GGA TCA TTA CTG AGC GCG AGG CCC CG-3′)/S2 (5′-CGC CGC CCT GGC GCG AGA TAC A-3′). The alignment of obtained sequences (GenBank Accession Nos. GU358452, 507 bp; GU358451, 580 bp; and GU358450, 455 bp) showed a sequence identity of 100, 99, and 99% with the ITS sequences of Erysiphe diffusa, Oidium neolycopersici, and Podosphaera xanthii (GenBank Accession Nos. FJ378880, EU909694, and GQ927254), respectively. On the basis of morphological characteristics and ITS sequence similarities, these fungi were identified as E. diffusa (Cooke & Peck) U. Braun & S. Takam., O. neolycopersici L. Kiss, and P. xanthii (Castagne) U. Braun & S. Takam., respectively (1,3). Single colonies on papaya leaves infected with powdery mildew were identified in the laboratory and maintained on papaya leaves as inoculum. Pathogenicity was confirmed through inoculations by gently pressing a single colony of each fungus onto leaves of healthy papaya seedlings (cv. Horng-Fe). Five seedlings were inoculated for each fungus and then covered with plastic bags for 2 days. Five noninoculated seedlings served as control. After inoculation, treated plants were maintained separately from the control in different rooms of a greenhouse at 25°C under natural daylight conditions. Seven days after inoculation, typical symptoms of powdery mildew were observed on inoculated plants, but not on noninoculated plants. The same species from diseased lesions following artificial inoculation with each fungus were identified with light microscopy. Papaya was previously described as a host to O. caricae Noack in many tropical and subtropical areas of the world including Taiwan (2). However E. cruciferarum, Golovinomyces cichoracearum, Oidiopsis sicula, O. caricae, O. caricae-papayae, O. caricicola, O. indicum, O. papayae, Ovulariopsis papayae, P. caricae-papayae, P. macularis, P. xanthii, and Streptopodium caricae were reported to infect papaya (4). To our knowledge, this is the first report of papaya powdery mildew caused by E. diffusa and O. neolycopersici in the world and the first report of the three fungi found on papaya in Taiwan. References: (1) U. Braun and S. Takamatsu. Schlechtendalia 4:1, 2000. (2) H. S. Chien and H. L. Wang. J. Agric. Res. China 33:320, 1984. (3) L. Kiss et al. Mycol. Res. 105:684, 2001. (4) J. R. Liberato et al. Mycol. Res. 108:1185, 2004.


Plant Disease ◽  
2020 ◽  
Author(s):  
Mo Zhu ◽  
Jie Ji ◽  
Xiao Duan ◽  
Wenqi Shi ◽  
YongFang Li

Bromus catharticus, rescuegrass, is a brome grass that has been cultivated for herbage production, and been widely naturalized in many provinces of China, including Henan province. During April and May 2020, powdery mildew was found on leaves of Br. catharticus on the campus of Henan Normal University, Xinxiang city (35.3°N; 113.9°E), Henan Province, China. Abundant white or grayish irregular or coalesced circular powdery colonies were scattered on the adaxial surface of leaves and 70% of the leaf areas were affected. Some of the infected leaves either were chlorotic or senescent. About 60% of the observed plants showed powdery mildew symptoms. Conidiophores (n = 25) were 32 to 45 μm × 7 to 15 μm and composed of foot cells and conidia (mostly 6 conidia) in chains. Conidia (n = 50) were 25 to 35 μm × 10 to 15 μm, on average 30 × 13 μm, with a length/width ratio of 2.3. Chasmothecia were not found. Based on these morphologic characteristics, the pathogen was initially identified as Blumeria graminis f. sp. bromi (Braun and Cook 2012; Troch et al. 2014). B. graminis mycelia and conidia were collected, and total genomic DNA was extracted (Zhu et al. 2019). The rDNA internal transcribed spacer (ITS) region was amplified with primer pairs ITS1/ITS4. The amplicon was cloned and sequenced. The sequence (574 bp) was deposited into GenBank under Accession No. MT892940. BLASTn analysis revealed that MT892940 was 100% identical to B. graminis f. sp. bromi on Br. catharticus (AB000935, 550 of 550 nucleotides) (Takamatsu et al. 1998). Phylogenetic analysis of MT892940 and ITS of other B. graminis ff. spp. clearly indicated least two phylogenetically distinct clades of B. graminis f. sp. bromi and that MT892940 clustered with the Takamatsu vouchers. Leaf surfaces of five healthy plants were fixed at the base of a settling tower and then inoculated by blowing conidia from diseased leaves using pressurized air. Five non-inoculated plants served as controls. The inoculated and non-inoculated plants were maintained separately in two growth chambers (humidity, 60%; light/dark, 16 h/8 h; temperature, 18℃). Thirteen- to fifteen-days after inoculation, B. graminis signs and symptoms were visible on inoculated leaves, whereas control plants remained asymptomatic. The pathogenicity assays were repeated twice with the same results. The observed signs and symptoms were morphologically identical to those of the originally infected leaves. Accordingly, the causal organism of the powdery mildew was confirmed as B. graminis f. sp. bromi by morphological characteristics and ITS sequence data. B. graminis has been reported on Br. catharticus in the United States (Klingeman et al. 2018), Japan (Inuma et al. 2007) and Argentina (Delhey et al. 2003). To our best knowledge, this is the first report of B. graminis on Br. catharticus in China. Since hybridization of B. graminis ff. spp. is a mechanism of adaptation to new hosts, Br. catharticus may serve as a primary inoculum reservoir of B. graminis to infect other species (Menardo et al. 2016). This report provides fundamental information for the powdery mildew that can be used to develop control management of the disease in Br. catharticus herbage production.


Plant Disease ◽  
2021 ◽  
Author(s):  
In-Young Choi ◽  
Ho-Jong Ju ◽  
Kui-Jae Lee ◽  
Hyeon-Dong Shin

Verbena bonariensis L., named as purple-top vervain or Argentinian vervain, is native to tropical South America. It is cultivated worldwide as an ornamental plant. During summer and autumn of 2020, over 50% of the leaves of V. bonariensis were found infected with powdery mildew in a flower garden in Seoul (37°35'19"N 127°01'07"E), Korea. White, superficial mycelia developed initially on the leaves and subsequently covered surfaces of leaves and stems, are resulting in leaf discoloration, early defoliation, and shoots distortion. Heavily infected plants lost ornamental value. A representative voucher specimen was deposited in the Korea University herbarium (KUS-F32168). Morphological characterization and measurements of conidiophores and conidia were carried out using fresh samples. Microscopic observation showed that aAppressoria on the superficial hypha were nipple-shaped, but rarely found or nearly absent. Conidiophores (n = 30) were cylindrical, 110 to 220 × 10 to 12 µm, and produced 2 to 5 immature conidia in chains with a sinuate outline, followed by 2 to 3 short cells. Foot-cells of conidiophores were straight, cylindrical, and 46 to 90 μm long. Conidia (n = 30) were hyaline, ellipsoid to doliiform, 28 to 40 × 18 to 24 μm with a length/width ratio of 1.3 to 2.0, and contained small be like oil-like drops, but without distinct fibrosin bodies. Primary conidia were apically rounded and sub-truncate at the base. Germ tubes were produced at perihilar position of the conidia. Chasmothecia were not observed. These morphological characteristics were typical of the conidial stage of the genus Golovinomyces (Braun and Cook 2012, Qiu et al. 2020). To identify the fungus, rDNA was extracted from the voucher sample. PCR products were amplified using the primer pair ITS1F/PM6 for internal transcribed spacer (ITS), and PM3/TW14 for the large subunit (LSU) of the rDNA (Takamatsu and Kano 2001). The resulting sequences were registered to GenBank (MW599742 for ITS, and MW599743 for LSU). Using Blast’n search of GenBank, sequences showed 100% identity for ITS and LSU with G. ambrosiae (MT355557, KX987303, MH078047 for ITS, and AB769427, AB769426 for LSU), respectively. Thus, based on morphology and molecular analysis, the isolate on V. bonariensis in Korea was identified as G. ambrosiae (Schwein.) U. Braun & R.T.A. Cook. Pathogenicity tests were carried out by touching an infected leaf onto healthy leaves of disease-free pot-grown plants using a replication of five plants, with five non-inoculated plants used as controls. After 7 days, typical powdery mildew colonies started to appear on the inoculated leaves. The fungus on inoculated leaves was morphologically identical to that originally observed in the field. All non-inoculated control leaves remained symptomless. On different global Verbena species, tThere have been many reports of Golovinomyces powdery mildews including G. cichoracearum s.lat., G. longipes, G. monardae, G. orontii s.lat., and G. verbenae (Farr and Rossman 2021). In China, G. verbenae was recorded on V.erbena phlogiflora (Liu et al. 2006). Golovinomyces powdery mildew has not been reported on Verbena spp. in Korea. Powdery mildew has been reported on V. bonariensis in California, but identity of the causal agent had not been reported. To our knowledge, this is the first report on the identity of the powdery mildew caused by G. ambrosiae on V. bonariensis in Korea. Since heavily infected plants lost ornamental value, appropriate control measures should be developed.


Plant Disease ◽  
2012 ◽  
Vol 96 (7) ◽  
pp. 1072-1072 ◽  
Author(s):  
M. J. Park ◽  
S. E. Cho ◽  
J. H. Park ◽  
S. K. Lee ◽  
H. D. Shin

Hydrangea macrophylla (Thunb.) Ser., known as mophead hydrangea, is native to Japan and is used as a potted ornamental or is planted for landscaping in gardens worldwide. In May 2011, powdery mildew occurred on potted mophead hydrangea cv. Emerald plants in polyethylene-film-covered greenhouses in Icheon, Korea. Heavily infected plantings were unmarketable, mainly due to purplish red discoloration and crinkling of leaves. Such powdery mildew symptoms on mophead hydrangea in gardens had been often found in Korea since 2001, and the collections (n = 10) were deposited in the Korea University herbarium (KUS). In all cases, there was no trace of chasmothecia formation. Mycelium was effuse on both sides of leaves, young stems, and flower petals. Appressoria were well developed, lobed, and solitary or in opposite pairs. Conidiophores were cylindrical, 70 to 145 × 7.5 to 10 μm, and composed of three to four cells. Foot-cells of conidiophores were straight to sub-straight, cylindric, short, and mostly less than 30 μm long. Conidia produced singly were ellipsoid to oval, 32 to 50 × 14 to 22 μm with a length/width ratio of 1.7 to 2.8, lacked fibrosin bodies, and showed angular/rectangular wrinkling of outer walls. Germ tubes were produced on the perihilar position of conidia. Primary conidia were apically conical, basally rounded to subtruncate, 32 to 42 × 14 to 18 μm, and thus generally smaller than the secondary conidia. The morphological characteristics are consistent with previous descriptions of Oidium hortensiae Jørst. (3,4). To confirm the identification, the complete internal transcribed spacer (ITS) region of rDNA from KUS-F25514 was amplified with primers ITS5 and P3 and directly sequenced. The resulting sequence of 694 bp was deposited in GenBank (Accession No. JQ669944). There was no ITS sequence data known from powdery mildews on Hydrangea. Therefore, this is the first sequence of O. hortensiae submitted to GenBank. Nevertheless, a GenBank BLAST search of this sequence showed >99% similarity with those of Oidium spp. recorded on crassulacean hosts (e.g. GenBank Accession Nos. EU185641 ex Sedum, EU185636 ex Echeveria, and EU185639 ex Dudleya) (2), suggesting their close phylogenetic relationship. Pathogenicity was confirmed through inoculation by gently pressing diseased leaves onto leaves of five healthy potted mophead hydrangea cv. Emerald plants. Five noninoculated plants of the same cultivar served as controls. Plants were maintained in a greenhouse at 22 ± 2°C. Inoculated plants developed signs and symptoms after 6 days, whereas the control plants remained healthy. The fungus present on the inoculated plants was morphologically identical to that originally observed on diseased plants, fulfilling Koch's postulates. Occurrence of powdery mildew disease on mophead hydrangea is circumglobal (1). To our knowledge, this is the first report of powdery mildew disease caused by O. hortensiae on mophead hydrangea in Korea. Powdery mildew infections in Korea pose a serious threat to the continued production of quality potted mophead hydrangea in polyethylene-film-covered greenhouses. References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved March 19, 2012, from http://nt.ars-grin.gov/fungaldatabases/ . (2) B. Henricot. Plant Pathol. 57:779, 2008. (3) A. Schmidt and M. Scholler. Mycotaxon 115:287, 2011. (4) S. Tanda. J. Agric. Sci. Tokyo Univ. Agric. 43:253, 1999.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 999-999 ◽  
Author(s):  
J. K. Choi ◽  
B. S. Kim ◽  
S. H. Hong ◽  
S. E. Cho ◽  
H. D. Shin

Ixeris chinensis (Thunb.) Nakai, known as Chinese ixeris, is distributed from Siberia to Japan, including Korea, Taiwan, and China. The whole plant has been used in folk medicine in Asia (4). In Korea, the plants of Chinese ixeris have been gathered and used as a wild root vegetable. During summer to autumn of 2011, Chinese ixeris leaves were found to be heavily infected with a powdery mildew in several locations of Korea. Symptoms first appeared as thin white colonies, which subsequently developed into abundant hyphal growth on both sides of the leaves, leading to drying of the leaves. The same symptoms on Chinese ixeris leaves were continuously observed in 2012 and 2013. Voucher specimens (n = 10) were deposited at Korea University Herbarium (KUS). Hyphal appressoria were moderately lobed or nipple-shaped. Conidiophores arose from the lateral part of the hyphae, measured 100 to 270 × 10 to 12.5 μm, and produced 2 to 6 immature conidia in chains with a sinuate outline. Basal parts of foot-cells in conidiophores were curved. Conidia were barrel-shaped to ellipsoid, measured 26 to 36 × 13 to 19 μm (length/width ratio = 1.7 to 2.4), lacked fibrosin bodies, and showed reticulate wrinkling of the outer walls. Primary conidia were ovate with conical-obtuse apex and subtruncate base. Germ tubes were produced on the perihilar position of conidia. Chasmothecia were not observed. The morphological characteristics were typical of the Euoidium type anamorph of the genus Golovinomyces, and the fungus measurements and structures were consistent with those of G. sonchicola U. Braun & R.T.A. Cook (1). To confirm the identification, internal transcribed spacer (ITS) region of rDNA sequences from a representative material (KUS-F26212) was amplified using primers ITS5/P3 and sequenced (3). The resulting 416-bp sequence was deposited in GenBank (Accession No. KF819857). A GenBank BLAST search revealed that the isolate showed >99% sequence similarity with those of G. cichoracearum from Sonchus spp. (e.g., AB453762, AF011296, JQ010848, etc.). G. sonchicola is currently confined to G. cichoracearum s. lat. on Sonchus spp., based on molecular sequence analyses (1). Pathogenicity was confirmed through inoculation by gently pressing a diseased leaf onto leaves of five healthy potted Chinese ixeris. Five non-inoculated plants served as controls. Inoculated plants developed symptoms after 6 days, whereas the controls remained symptomless. The fungus present on the inoculated plants was identical morphologically to that originally observed on diseased plants. Powdery mildew infections of I. chinensis associated with Golovinomyces have been known in China (2). To our knowledge, this is the first report of powdery mildew disease caused by G. sonchicola on I. chinensis in Korea. Farming of Chinese ixeris has recently started on a commercial scale in Korea. Though no statistical data are available, we postulate the cultivation area in Korea to be approximately 200 ha, mostly growing without chemical controls. Occurrence of powdery mildews poses a potential threat to safe production of this vegetable, especially in organic farming. References: (1) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No.11. CBS, Utrecht, 2012. (2) F. L. Tai. Bull. Chinese Bot. Sci. 2:16, 1936. (3) S. Takamatsu et al. Mycol. Res. 113:117, 2009. (4) S. J. Zhang et al. J. Nat. Prod. 69:1425, 2006.


Plant Disease ◽  
2014 ◽  
Vol 98 (6) ◽  
pp. 847-847
Author(s):  
S. E. Cho ◽  
M. J. Park ◽  
J. H. Park ◽  
J. Y. Kim ◽  
H. D. Shin

Parsley, Petroselinum crispum (Mill.) Nyman, is a minor but important leaf crop in Korea. In June 2010, parsley plants (cv. Paramount) showing typical symptoms of powdery mildew were found with approximately 90% incidence (percentage of plants showing symptoms) in polyethylene-film-covered greenhouses in an organic farm in Icheon County of Korea. Symptoms first appeared as thin white colonies, which subsequently showed abundant growth on the leaves with chlorosis and crinkling. Most diseased plantings were unmarketable and shriveled without being harvested. The damage due to powdery mildew infections on parsley has reappeared in Icheon County and Gangneung City with confirmation of the causal agent made again in 2011 and 2012. Voucher specimens were deposited in the Korea University Herbarium (KUS). Appressoria on the mycelium were multilobed or moderately lobed. Conidiophores were cylindrical, 75 to 125 × 8 to 10 μm, straight in foot-cells, and produced conidia singly, followed by 2 to 3 cells. Conidia were oblong-elliptical to oblong, 32 to 55 × 14 to 20 μm with a length/width ratio of 1.7 to 2.9, lacked fibrosin bodies, and produced germ tubes on the perihilar position, with angular/rectangular wrinkling of the outer walls. First-formed conidia were apically conical, basally subtruncate to rounded, and generally smaller than the secondary conidia. Chasmothecia were not found. These structures are typical of the powdery mildew Pseudoidium anamorph of the genus Erysiphe. The specific measurements and morphological characteristics were consistent with those of E. heraclei DC. (1). To confirm the identity of the causal fungus, the complete ITS region of rDNA from isolate KUS-F25037 was amplified with primers ITS5 and P3 (3) and sequenced directly. The resulting 606-bp sequence was deposited in GenBank (Accession No. KF680162). A GenBank BLAST search of this sequence revealed 100% identity with that of E. heraclei on Anethum graveolens from Korea (JN603995) and >99% similarity with those of E. heraclei on Daucus carota from Mexico (GU252368), Pimpinella affinis from Iran (AB104513), Anthriscus cerefolium from Korea (KF111807), and many other parsley family (Apiaceae) plants. Pathogenicity was verified through inoculation by gently pressing diseased leaves onto leaves of five healthy potted parsley plants. Five non-inoculated plants served as negative controls. Inoculated plants developed symptoms after 7 days, whereas the control plants remained symptomless. The fungus present on the inoculated plants was morphologically identical to that originally observed on diseased plants. Parsley powdery mildew caused by E. heraclei has been known in Europe, North America, Brazil, and Japan (2,4). To our knowledge, this is the first report of powdery mildew infections by E. heraclei on parsley in Korea. Since cultivation of parsley was only recently started on a commercial scale in Korea, powdery mildew infections pose a serious threat to safe production of this herb, especially those grown in organic farming where chemical options are limited. References: (1) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No. 11. CBS, Utrecht, 2012. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Syst. Mycol. Microbiol. Lab., Online publication, ARS, USDA, retrieved September 17, 2013. (3) S. Takamatsu et al. Mycol. Res. 113:117, 2009. (4) Y. Tsuzaki and K. Sogou. Proc. Assoc. Plant Prot. Shikoku 24:47, 1989.


Plant Disease ◽  
2014 ◽  
Vol 98 (3) ◽  
pp. 426-426
Author(s):  
K. S. Han ◽  
S. E. Cho ◽  
J. H. Park ◽  
H. D. Shin

Chervil (Anthriscus cerefolium (L.) Hoffm.), belonging to the family Apiaceae, is an aromatic annual herb that is native to the Caucasus. It is widely used as a flavoring agent for culinary purposes. This herb was recently introduced in Korea. In April 2013, plants showing typical symptoms of powdery mildew disease were observed in a polyethylene film-covered greenhouse in Seoul, Korea. White mycelium bearing conidia formed irregular patches on leaves and stems. Mycelial growth was amphigenous. Severe infections caused leaf withering and premature senescence. Voucher specimens were deposited in the Korea University Herbarium (KUS). Hyphae were septate, branched, with moderately lobed appressoria. Conidiophores presented 3 to 4 cells and measured 85 to 148 × 7 to 9 μm. Foot-cells of conidiophores were 37 to 50 μm long. Conidia were produced singly, oblong-elliptical to oblong, measured 30 to 50 × 13 to 18 μm with a length/width ratio of 2.0 to 3.3, lacked conspicuous fibrosin bodies, and with angular/rectangular wrinkling of the outer walls. Germ tubes were produced in the subterminal position of conidia. Chasmothecia were not found. These structures are typical of the powdery mildew Pseudoidium anamorph of the genus Erysiphe. The specific measurements and morphological characteristics were consistent with those of E. heraclei DC. (1). To confirm identity of the causal fungus, the complete internal transcribed spacer (ITS) region of rDNA of KUS-F27279 was amplified with primers ITS5 and P3 (4) and sequenced directly. The resulting 561-bp sequence was deposited in GenBank (Accession No. KF111807). A GenBank BLAST search of this sequence showed >99% similarity with those of many E. heraclei isolates, e.g., Pimpinella affinis (AB104513), Anethum graveolens (JN603995), and Daucus carota (EU371725). Pathogenicity was confirmed through inoculation by gently pressing a diseased leaf onto leaves of five healthy potted chervil plants. Five non-inoculated plants served as a control treatment. Plants were maintained in a greenhouse at 22 ± 2°C. Inoculated plants developed signs and symptoms after 6 days, whereas the control plants remained healthy. The fungus present on the inoculated plants was identical morphologically to that originally observed on diseased plants. Chervil powdery mildews caused by E. heraclei have been reported in Europe (Bulgaria, France, Germany, Hungary, Italy, Romania, Switzerland, and the former Soviet Union) and the United States (2,3). To our knowledge, this is the first report of powdery mildew caused by E. heraclei on chervil in Asia as well as in Korea. The plant is cultivated in commercial farms for its edible leaves in Korea. Occurrence of powdery mildew is a threat to quality and marketability of this herb, especially those grown in organic farming where chemical control options are limited. References: (1) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No. 11, CBS, Utrecht, 2012. (2) D. F. Farr and A. Y. Rossman. Fungal Databases, Syst. Mycol. Microbiol. Lab., Online publication. ARS, USDA. Retrieved July 29, 2013. (3) S. T. Koike and G. S. Saenz. Plant Dis. 88:1163, 2004. (4) S. Takamatsu et al. Mycol. Res. 113:117, 2009.


Sign in / Sign up

Export Citation Format

Share Document