scholarly journals Distinctive Symptoms and Signs of Downy Mildew on Cold-Climate Wine Grape Cultivars

2017 ◽  
Vol 18 (3) ◽  
pp. 192-195
Author(s):  
David S. Jones ◽  
Patricia S. McManus

Downy mildew, caused Plasmopara viticola, is a major disease affecting grape production worldwide. While the symptoms and signs of downy mildew on European wine grapes (Vitis vinifera) are well documented, minimal information is available regarding the symptoms and signs on cold-hardy cultivars that are crosses of V. vinifera and Vitis species native to North America. Referred to as “cold-climate cultivars,” these hybrids have been released over the past two decades and form the basis of a burgeoning wine industry in the northern United States. Most research on downy mildew of grape has involved V. vinifera, and consequently, many images used for educational purposes illustrate “classic” symptoms and signs on highly susceptible cultivars of V. vinifera. However, we have observed that such images can be inconsistent with symptomology in the cold-climate grape hybrids, and there are differences in the symptoms and signs of downy mildew among cold-climate cultivars. These inconsistencies can result in incorrect diagnosis, which can lead to poor management decisions, including application of products that are not appropriate for the pathogen(s) present. Thus, the objective of the current guide is to describe downy mildew symptoms and signs on cold-climate cultivars, with special attention to features that are not documented in resources widely used for grape disease diagnosis.

Plant Disease ◽  
2017 ◽  
Vol 101 (7) ◽  
pp. 1077-1085 ◽  
Author(s):  
David S. Jones ◽  
Patricia S. McManus

Lack of knowledge regarding the susceptibility of cold-climate hybrid wine grape cultivars may be leading to the overuse of fungicides and underutilization of plant host resistance to combat disease in the northern United States. To provide new insights on diseases of cold-climate cultivars and to update management recommendations, disease was evaluated in three vineyards containing eight cultivars that were not sprayed with fungicides in 2015 and 2016. Disease severity or incidence of downy mildew (Plasmopara viticola), powdery mildew (Erysiphe necator), and black rot (Guignardia bidwellii) were measured from bud break until 2 weeks after harvest. Cold-climate cultivars ranged widely in susceptibility to different diseases and, although several cultivars were relatively resistant to two diseases, no cultivar was highly resistant to all three diseases. Additionally, a difference between foliar and fruit susceptibility for all three diseases was noted in several cultivars. These data provide a foundation for developing low-spray and certified organic disease management strategies for cold-climate wine grape cultivars based on susceptibility to disease.


2021 ◽  
Vol 22 (2) ◽  
pp. 940
Author(s):  
Elodie Vandelle ◽  
Pietro Ariani ◽  
Alice Regaiolo ◽  
Davide Danzi ◽  
Arianna Lovato ◽  
...  

Downy mildew, caused by Plasmopara viticola, is one of the most severe diseases of grapevine (Vitis vinifera L.). Genetic resistance is an effective and sustainable control strategy, but major resistance genes (encoding receptors for specific pathogen effectors) introgressed from wild Vitis species, although effective, may be non-durable because the pathogen can evolve to avoid specific recognition. Previous transcriptomic studies in the resistant species Vitis riparia highlighted the activation of signal transduction components during infection. The transfer of such components to V. vinifera might confer less specific and therefore more durable resistance. Here, we describe the generation of transgenic V. vinifera lines constitutively expressing the V. riparia E3 ubiquitin ligase gene VriATL156. Phenotypic and molecular analysis revealed that the transgenic plants were less susceptible to P. viticola than vector-only controls, confirming the role of this E3 ubiquitin ligase in the innate immune response. Two independent transgenic lines were selected for detailed analysis of the resistance phenotype by RNA-Seq and microscopy, revealing the profound reprogramming of transcription to achieve resistance that operates from the earliest stages of pathogen infection. The introduction of VriATL156 into elite grapevine cultivars could therefore provide an effective and sustainable control measure against downy mildew.


Plant Disease ◽  
2021 ◽  
Author(s):  
Bora Kim ◽  
Jae Sung Lee ◽  
Young-Joon Choi

Vitis davidii (Rom.Caill.) Foëx, commonly known as spine grape, is a deciduous climber native to China. Its fruits are consumed fresh or used to make wine in South and Central China. In recent years, spine grape has been cultivated in Korea. In July 2020, downy mildew was detected on spine grape vines in Jeongeup (35°42′17″N, 126°54′02″E), Korea, with a disease incidence of 70%. The symptoms appeared as yellowish, brownish, or reddish, vein-limited, poly-angular adaxial leaf spots, correspond to dense, white downy growth abaxially. A representative specimen was deposited in the Kunsan National University Herbarium (KSNUH679). Sporangiophores were tree-like, hyaline, mostly straight, and monopodially branched in orders of three to six; they measured (219.4–)273.2 to 435.1(–546.6) × (4.8–)6.7 to 9.0(–10.0) μm (n = 50). Ultimate branchlets were bi or trifurcate, straight to slightly curved, with truncate or, rarely, a swollen tip and measured 2.9 to 9.7 μm long and 0.8 to 2.5 μm wide at the base (n = 50). Sporangia were hyaline, ovoidal or lemon-shaped; they measured (16.8–)20.0 to 28.8(–34.2) × (11.4–)13.1 to 17.0(–20.1) μm with a length to width ratio of (1.28–)1.46 to 1.78(–2.07) (n = 50). This morphology was as described for Plasmopara viticola (Berk. & M. A. Curtis) Berl. & De Toni (Hall, 1989). Genomic DNA was extracted directly from infected V. davidii leaves. Three regions were PCR-amplified and sequenced: cox2 mtDNA with primers cox2F and cox2-RC4 (Choi et al., 2015), actin with primers pve04815-F and pve04815-R, and beta-tubulin with primers pvc389-F3 and pvc389-R4 (Rouxel et al., 2013). The resulting sequences were deposited in GenBank (accession nos. MT834527 for cox2, MT834525 for actin, and MT834526 for beta-tubulin). A BLASTn search revealed that the Korean sample was identical to P. viticola clade aestivalis originating from Vitis species: MK215072 for cox2 sequence, KY933800 for actin, and MK358393 for beta-tubulin. In all phylogenetic analyses of the three genes (cox2, actin, and beta-tubulin), KSNUH679 came out as phylogenetically place within P. viticola clade aestivalis, which has recently been reported on V. coignetiae and V. ficifolia var. sinuata in Korea (Kim et al., 2019). A pathogenicity test was performed twice by inoculating the leaves of 10 healthy spine grape plants with a sporangial suspension (~1 × 106 sporangia·mL-1) and incubating them in a growth chamber at 25 °C, 12-h day/night cycle, and 90% relative humidity; five non-inoculated plants served as controls. After two weeks, all inoculated plants developed typical downy mildew symptoms could be observed, whereas the controls remained symptomless. Morphology and molecular features confirmed the identity of the pathogen of spine grape to be P. viticola. To the best of our knowledge, this is the first report of downy mildew caused by P. viticola on V. davidii in Korea. Recently, downy mildew outbreaks caused by P. viticola have been recorded in spine grape plantations in southern China (Yi et al., 2019). Considering the potential of spine grape as a novel crop for Korea, P. viticola appears to represent a significant threat to this industry.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gaoqing Xiang ◽  
Xiao Yin ◽  
Weili Niu ◽  
Tingting Chen ◽  
Ruiqi Liu ◽  
...  

Grapevine downy mildew is an insurmountable disease that endangers grapevine production and the wine industry worldwide. The causal agent of the disease is the obligate biotrophic oomycete Plasmopara viticola, for which the pathogenic mechanism remains largely unknown. Crinkling and necrosis proteins (CRN) are an ancient class of effectors utilized by pathogens, including oomycetes, that interfere with host plant defense reactions. In this study, 27 CRN-like genes were cloned from the P. viticola isolate YL genome, hereafter referred to as PvCRN genes, and characterized in silico and in planta. PvCRN genes in ‘YL’ share high sequence identities with their ortholog genes in the other three previously sequenced P. viticola isolates. Sequence divergence among the genes in the PvCRN family indicates that different PvCRN genes have different roles. Phylogenetic analysis of the PvCRN and the CRN proteins encoded by genes in the P. halstedii genome suggests that various functions might have been acquired by the CRN superfamily through independent evolution of Plasmopara species. When transiently expressed in plant cells, the PvCRN protein family shows multiple subcellular localizations. None of the cloned PvCRN proteins induced hypersensitive response (HR)-like cell death on the downy mildew-resistant grapevine Vitis riparia. This was in accordance with the result that most PvCRN proteins, except PvCRN11, failed to induce necrosis in Nicotiana benthamiana. Pattern-triggered immunity (PTI) induced by INF1 was hampered by several PvCRN proteins. In addition, 15 PvCRN proteins prevented Bax-induced plant programmed cell death. Among the cell death-suppressing members, PvCRN17, PvCRN20, and PvCRN23 were found to promote the susceptibility of N. benthamiana to Phytophthora capsici, which is a semi-biotrophic oomycete. Moreover, the nucleus-targeting member, PvCRN19, promoted the susceptibility of N. benthamiana to P. capsici. Therefore, these PvCRN proteins were estimated to be virulent effectors involved in the pathogenicity of P. viticola YL. Collectively, this study provides comprehensive insight into the CRN effector repertoire of P. viticola YL, which will help further elucidate the molecular mechanisms of the pathogenesis of grapevine downy mildew.


2012 ◽  
Vol 102 (11) ◽  
pp. 1094-1101 ◽  
Author(s):  
Ying Yu ◽  
Yali Zhang ◽  
Ling Yin ◽  
Jiang Lu

The resistance and susceptibility of grapevines to downy mildew (DM) disease caused by Plasmopara viticola were compared among different cultivars/accessions belonging to Vitis vinifera, V. rotundifolia, and 10 oriental Vitis species. After inoculation with P. viticola pathogen, no symptom was found in V. rotundifolia grapevines at all, while oriental species V. davidii and V. piasezkii, like V. vinifera, were susceptible to DM disease. The other eight oriental Vitis species showed various resistance levels to DM disease. Intraspecific resistant variations were also observed in V. amurensis. Microscopy studies were conducted on various time courses after pathogen infection on grape leaves. P. viticola hyphae were not observed in V. rotundifolia cultivars, while symptoms with varying degrees of severity were observed among the Euvitis species. In general, the DM resistant oriental species showed a slower development of hypha and less formation of haustoria than DM susceptible V. vinifera grapevines. Cells with distinctive fluorescence were observed in V. rotundifolia and the oriental species V. pseudoreticulata, and callose deposits were observed in V. rotundifolia, V. pseudoreticulata, and V. amurensis grapevines. Based on the results of morphological observations and microscopy studies, we concluded that there were five levels of grapevine resistance to P. viticola pathogen: (i) immune, (ii) extremely resistant, (iii) resistant, (iv) partly resistant, and (v) susceptible.


2009 ◽  
Vol 26 (Special Issue) ◽  
pp. S13-S17 ◽  
Author(s):  
P. Bábíková ◽  
N. Vrchotová ◽  
J. Tříska ◽  
M. Kyseláková

The aim of this project was to study changes in the content of <i>trans</i>-resveratrol in berries and leaves of grapevine (<i>Vitis</i> sp.) infested by fungal diseases, especially by <i>Botryotinia fuckeliana</i> Whetzel, called as grey mildew, <i>Plasmopara viticola</i> (Berk. & M.A. Curtis) Berl & De Toni, called downy mildew and <i>Uncinula necator</i> (Schw.) Burr, called powdery mildew. In our experiments two white and two blue varieties were used. Contents of <i>trans</i>-resveratrol were determined in healthy and infested leaves and in healthy berries. Infested leaves of white varieties contained more <i>trans</i>-resveratrol than those of blue varieties. The content of <i>trans</i>-resveratrol in berries was lower than that in leaves.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Garima Bhatia ◽  
Santosh K. Upadhyay ◽  
Anuradha Upadhyay ◽  
Kashmir Singh

Abstract Background Long non-coding RNAs (lncRNAs) are regulatory transcripts of length > 200 nt. Owing to the rapidly progressing RNA-sequencing technologies, lncRNAs are emerging as considerable nodes in the plant antifungal defense networks. Therefore, we investigated their role in Vitis vinifera (grapevine) in response to obligate biotrophic fungal phytopathogens, Erysiphe necator (powdery mildew, PM) and Plasmopara viticola (downy mildew, DM), which impose huge agro-economic burden on grape-growers worldwide. Results Using computational approach based on RNA-seq data, 71 PM- and 83 DM-responsive V. vinifera lncRNAs were identified and comprehensively examined for their putative functional roles in plant defense response. V. vinifera protein coding sequences (CDS) were also profiled based on expression levels, and 1037 PM-responsive and 670 DM-responsive CDS were identified. Next, co-expression analysis-based functional annotation revealed their association with gene ontology (GO) terms for ‘response to stress’, ‘response to biotic stimulus’, ‘immune system process’, etc. Further investigation based on analysis of domains, enzyme classification, pathways enrichment, transcription factors (TFs), interactions with microRNAs (miRNAs), and real-time quantitative PCR of lncRNAs and co-expressing CDS pairs suggested their involvement in modulation of basal and specific defense responses such as: Ca2+-dependent signaling, cell wall reinforcement, reactive oxygen species metabolism, pathogenesis related proteins accumulation, phytohormonal signal transduction, and secondary metabolism. Conclusions Overall, the identified lncRNAs provide insights into the underlying intricacy of grapevine transcriptional reprogramming/post-transcriptional regulation to delay or seize the living cell-dependent pathogen growth. Therefore, in addition to defense-responsive genes such as TFs, the identified lncRNAs can be further examined and leveraged to candidates for biotechnological improvement/breeding to enhance fungal stress resistance in this susceptible fruit crop of economic and nutritional importance.


2019 ◽  
Vol 11 (3) ◽  
pp. 954-969 ◽  
Author(s):  
Yann Dussert ◽  
Isabelle D Mazet ◽  
Carole Couture ◽  
Jérôme Gouzy ◽  
Marie-Christine Piron ◽  
...  

Abstract Downy mildews are obligate biotrophic oomycete pathogens that cause devastating plant diseases on economically important crops. Plasmopara viticola is the causal agent of grapevine downy mildew, a major disease in vineyards worldwide. We sequenced the genome of Pl. viticola with PacBio long reads and obtained a new 92.94 Mb assembly with high contiguity (359 scaffolds for a N50 of 706.5 kb) due to a better resolution of repeat regions. This assembly presented a high level of gene completeness, recovering 1,592 genes encoding secreted proteins involved in plant–pathogen interactions. Plasmopara viticola had a two-speed genome architecture, with secreted protein-encoding genes preferentially located in gene-sparse, repeat-rich regions and evolving rapidly, as indicated by pairwise dN/dS values. We also used short reads to assemble the genome of Plasmopara muralis, a closely related species infecting grape ivy (Parthenocissus tricuspidata). The lineage-specific proteins identified by comparative genomics analysis included a large proportion of RxLR cytoplasmic effectors and, more generally, genes with high dN/dS values. We identified 270 candidate genes under positive selection, including several genes encoding transporters and components of the RNA machinery potentially involved in host specialization. Finally, the Pl. viticola genome assembly generated here will allow the development of robust population genomics approaches for investigating the mechanisms involved in adaptation to biotic and abiotic selective pressures in this species.


Plant Disease ◽  
2017 ◽  
Vol 101 (11) ◽  
pp. 1958-1958
Author(s):  
Y. J. Choi ◽  
S. E. Cho ◽  
H. D. Shin

2015 ◽  
Vol 73 (11) ◽  
pp. 972-975
Author(s):  
Marleide da Mota Gomes

Friedrich Nietzsche (1844-1900) was a remarkable philologist-philosopher while remaining in a condition of ill-health. Issues about his wandering/disruptive behavior that might be a consequence and/or protection against his cognitive decline and multifaceted disease are presented. The life complex that raises speculations about its etiology is constituted by: insight, creativity and wandering behavior besides several symptoms and signs of disease(s), mainly neurological one. The most important issue to be considered at the moment is not the disease diagnosis (Lissauer’s general paresis or CADASIL, e.g.), but the probable Nietzsche’s great cognitive reserve linked to the multifactorial etiology (genetic and environmental), and shared characteristics both to creativity and psychopathology. This makes any disease seems especial regarding Nietzsche, and whichever the diagnostic hypothesis has to consider the Nietzsche’s unique background to express any disease(s).


Sign in / Sign up

Export Citation Format

Share Document