scholarly journals Comparing Avocado, Swamp Bay, and Camphortree as Hosts of Raffaelea lauricola Using a Green Fluorescent Protein (GFP)-Labeled Strain of the Pathogen

2017 ◽  
Vol 107 (1) ◽  
pp. 70-74 ◽  
Author(s):  
A. S. Campbell ◽  
R. C. Ploetz ◽  
J. A. Rollins

Raffaelea lauricola, a fungal symbiont of the ambrosia beetle Xyleborus glabratus, causes laurel wilt in members of the Lauraceae plant family. North American species in the family, such as avocado (Persea americana) and swamp bay (P. palustris), are particularly susceptible to laurel wilt, whereas the Asian camphortree (Cinnamomum camphora) is relatively tolerant. To determine whether susceptibility is related to pathogen colonization, a green fluorescent protein-labeled strain of R. lauricola was generated and used to inoculate avocado, swamp bay, and camphortree. Trees were harvested 3, 10, and 30 days after inoculation (DAI), and disease severity was rated on a 1-to-10 scale. By 30 DAI, avocado and swamp bay developed significantly more severe disease than camphortree (mean severities of 6.8 and 5.5 versus 1.6, P < 0.003). The extent of xylem colonization was recorded as the percentage of lumena that were colonized by the pathogen. More xylem was colonized in avocado than camphortree (0.9% versus 0.1%, P < 0.03) but colonization in swamp bay (0.4%) did not differ significantly from either host. Although there were significant correlations between xylem colonization and laurel wilt severity in avocado (r = 0.74), swamp bay (r = 0.82), and camphortree (r = 0.87), even severely affected trees of all species were scarcely colonized by the pathogen.

2010 ◽  
Vol 84 (9) ◽  
pp. 4821-4825 ◽  
Author(s):  
Xueying Qiao ◽  
Yang Sun ◽  
Jian Qiao ◽  
Leonard Mindich

ABSTRACT Bacteriophages of the family Cystoviridae have genomes consisting of three double-stranded RNA (dsRNA) segments, L, S, and M, packaged within a polyhedral capsid along with RNA polymerase. Transcription of genomic segment L is activated by the interaction of host protein YajQ with the capsid structure. Segment L codes for the proteins of the inner capsid, which are expressed early in infection. Green fluorescent protein (GFP) fusions with YajQ produce uniform fluorescence in uninfected cells and in cells infected with viruses not dependent on YajQ. Punctate fluorescence develops when cells are infected with YajQ-dependent viruses. It appears that the host protein binds to the infecting particles and remains with them during the entire infection period.


2009 ◽  
Vol 277 (1685) ◽  
pp. 1155-1160 ◽  
Author(s):  
Steven H. D. Haddock ◽  
Nadia Mastroianni ◽  
Lynne M. Christianson

Genes for the family of green-fluorescent proteins (GFPs) have been found in more than 100 species of animals, with some species containing six or more copies producing a variety of colours. Thus far, however, these species have all been within three phyla: Cnidaria, Arthropoda and Chordata. We have discovered GFP-type fluorescent proteins in the phylum Ctenophora, the comb jellies. The ctenophore proteins share the x YG chromophore motif of all other characterized GFP-type proteins. These proteins exhibit the uncommon property of reversible photoactivation, in which fluorescent emission becomes brighter upon exposure to light, then gradually decays to a non-fluorescent state. In addition to providing potentially useful optical probes with novel properties, finding a fluorescent protein in one of the earliest diverging metazoans adds further support to the possibility that these genes are likely to occur throughout animals.


Plant Disease ◽  
2011 ◽  
Vol 95 (12) ◽  
pp. 1589-1589 ◽  
Author(s):  
R. C. Ploetz ◽  
J. E. Peña ◽  
J. A. Smith ◽  
T. J. Dreaden ◽  
J. H. Crane ◽  
...  

Laurel wilt, caused by Raffaelea lauricola, threatens native and nonnative species in the Lauraceae in the southeastern United States, including the important commercial crop, avocado, Persea americana (2,4). Although the pathogen's vector, Xyleborus glabratus, was detected in Miami-Dade County, FL in January 2010, laurel wilt had not been reported (4). In February 2011, symptoms of the disease were observed on native swampbay, P. palustris, in Miami-Dade County (25°72′N, 80°48′W). Externally, foliage was brown, necrotic, and did not abscise; internally, sapwood was streaked with dark gray-to-bluish discoloration; and, in dead trees, holes of natal galleries of the vector from which columns of frass were attached were evident. On a semiselective medium for R. lauricola, a fungus with the pathogen's phenotype was isolated from symptomatic sapwood. Colonies were slow growing, light cream in color, with dendritic, closely appressed mycelium and often a slimy surface. A representative strain of the fungus was further identified with PCR primers for diagnostic small subunit (SSU) rDNA (1) and its SSU sequence (100% match, GenBank Accession No. JN578863). In each of two experiments, plants of ‘Simmonds’ avocado, the most important cultivar in Florida, were inoculated with three strains of the fungus, as described previously (3). Symptoms of laurel wilt developed in all inoculated plants and the fungus was recovered from each. After aerial and further ground surveys, additional symptomatic swampbay trees, some of which had defoliated, were detected in the vicinity of the original site. Since swampbay defoliates only a year or more after symptoms develop (4), the 2010 detection of X. glabratus may have coincided with an undetected presence of the disease. As of July 2011, a 6-km-diameter disease focus was evident in the area, the southernmost edge of which is 5 km from the nearest commercial avocado orchard. In August 2011, a dooryard avocado tree immediately north of the above focus was affected by laurel wilt, and an SSU sequence confirmed the involvement of R. lauricola (GenBank Accession No. JN613280). The outbreak of laurel wilt in Miami-Dade County represents a 150 km southerly jump in the distribution of this disease in the United States ( http://www.fs.fed.us/r8/foresthealth/laurelwilt/dist_map.shtml ) and is the first time this disease has been found in close proximity to Florida's primary commercial avocado production area. Approximately 98% of the state's commercial avocados, worth nearly $54 million per year, are produced in Miami-Dade County. Since effective fungicidal and insecticidal measures have not been developed for large, fruit-bearing trees, mitigation efforts will focus on the rapid identification and destruction of infected trees (3,4). References: (1) T. J. Dreaden et al. Phytopathology 98:S48, 2008. (2) S. W. Fraedrich et al. Plant Dis. 92:215, 2008. (3) R. C. Ploetz et al. Plant Dis. 95:977, 2011. (4) R. C. Ploetz et al. Recovery Plan for Laurel Wilt of Avocado. National Plant Disease Recovery System, USDA, ARS, 2011.


Sign in / Sign up

Export Citation Format

Share Document