scholarly journals Transcriptome analysis reveals the molecular mechanisms of response to an emergent yellow-flower disease in green Chinese prickly ash (Zanthoxylum schinifolium)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fan Xu ◽  
Qian Meng ◽  
Xiaodong Suo ◽  
Yonghong Xie ◽  
Yueqing Cheng ◽  
...  

AbstractChinese prickly ash (Zanthoxylum) is extensively used as spice and traditional medicine in eastern Asian countries. Recently, an emergent yellow-flower disease (YFD) break out in green Chinese prickly ash (Zanthoxylum schinifolium, Qinghuajiao in Chinese) at Chongqing municipality, and then leads to a sharp reduction in the yield of Qinghuajiao, and thus results in great economic losses for farmers. To address the molecular response for the emergent YFD of Qinghuajiao, we analyzed the transcriptome of 12 samples including the leaves and inflorescences of asymptomatic and symptomatic plants from three different towns at Chongqing by high-throughput RNA-Seq technique. A total of 126,550 genes and 229,643 transcripts were obtained, and 21,054 unigenes were expressed in all 12 samples. There were 56 and 164 different expressed genes (DEGs) for the AL_vs_SL (asymptomatic leaf vs symptomatic leaf) and AF_vs_SF (asymptomatic flower vs symptomatic flower) groups, respectively. The results of KEGG analysis showed that the “phenylpropanoid biosynthesis” pathway that related to plant–pathogen interaction were found in AL_vs_SL and AF_vs_SF groups, and the “Plant–pathogen interaction” found in AF_vs_SF group, implying that this Qinghuajiao YFD might cause by plant pathogen. Interestingly, we detected 33 common unigenes for the 2 groups, and almost these unigenes were up-regulated in the symptomatic plants. Moreover, most of which were homologs to virus RNA, the components of viruses, implying that this YFD was related to virus. Our results provided a primary molecular basis for the prevention and treatment of YFD of Qinghuajiao trees.

2020 ◽  
Author(s):  
Zhiqiang Zhang ◽  
Buhe Temuer ◽  
Xiaoyu Wang ◽  
Sarula Bao ◽  
Jinyan Liu ◽  
...  

Abstract Background: Thrips (Thysanoptera: Thripidae) are major insect pests on alfalfa and result in decreased plant nutrients and growth, low yields and even plant death. In our previous studies, an alfalfa variety (Caoyuan No.4) with high thrips resistance was bred through consecutive field recurrent selection. In order to better understand the genetic and molecular mechanisms of thrips resistance in Caoyuan No.4, RNA-Sequencing was employed using the thrips-resistant alfalfa accession (Caoyuan No.4) and a thrips-susceptible alfalfa accession (Caoyuan No.2), each with and without thrips infestation.Results: There were 851 genes constitutively upregulated and 434 genes downregulated in Caoyuan No.4 compared to Caoyuan No.2 without thrips infestation. The upregulated genes were mainly involved in primary metabolism such as energy metabolism and carbohydrate metabolism, lipid metabolism and certain secondary metabolites, while the downregulated genes were mainly related to plant-pathogen interaction. In addition, very few DEGs (only 13) were detected in Caoyuan No.4 after thrips stress, but a total of 3326 contigs DEGs were detected in Caoyuan No.2 after thrips stress. The upregulated genes in Caoyuan No.2 after stress were mainly involved in isoflavonoid biosynthesis, proteasome, amino sugar and nucleotide sugar metabolism, flavonoid biosynthesis as well as plant-pathogen interaction. Moreover, 117 genes that were shared in both the S_CK vs S_T group and S_CK vs R_CK group were divided into 6 clusters, which are mainly involved in secondary metabolism, fatty acid metabolism, amino acid metabolism, rust resistance kinase, WRKY transcription factor and nodule lectin.Conclusion: Both constitutive defensive genes and potential induced defensive genes were detected in the defense of Caoyuan No.4. That two distinct kinds of defensive genes — constitutive defensive genes and induced defensive genes — can be simultaneously activated and thus potentially enhance plant protection against insects attacks is a significant finding for plant resistance breeders.


2019 ◽  
Vol 109 (12) ◽  
pp. 2009-2021 ◽  
Author(s):  
Yongxia Li ◽  
Yuqian Feng ◽  
Quan Lü ◽  
Donghui Yan ◽  
Zhenyu Liu ◽  
...  

Poplar are important forestry species in China, but the Botryosphaeria dothidea pathogen causes serious economic losses worldwide. To identify candidate B. dothidea resistance proteins and explore the molecular mechanisms involved in poplar–pathogen interactions, proteomic responses of stem samples from resistant and susceptible poplar ecotypes to B. dothidea were investigated using nanoflow liquid chromatography-tandem mass spectrometry with label-free quantitative analysis. We identified 588 proteins, divided into 21 biological process categories including 48 oxidoreductases, 72 hydrolytic enzymes, 80 metabolic enzymes, and 29 proteins of unknown function. Differential proteome analysis revealed large differences between resistant Populus tomentosa Carr and susceptible Populus beijingensis Hsu ecotypes before and after inoculation. Among 102 identified proteins, 22 were highly upregulated in the resistant genotype but downregulated in the susceptible genotype. Proteins induced in P. tomentosa Carr in response to B. dothidea are associated with plant defenses including oxidoreductase activity (catalase, isocitrate dehydrogenase, and superoxide dismutase), phenylpropanoid biosynthesis and phenylalanine metabolism (alcohol dehydrogenase), photosynthesis (ATP synthase subunit alpha, ATP synthase gamma chain, photosystem I P700 chlorophyll a apoprotein A2, photosystem II CP47 chlorophyll apoprotein), carbon fixation (pyruvate kinase, triosephosphate isomerase, malic enzyme, phosphoglycerate kinase, ribulose-1,5-bisphosphate carboxylase, and ribulose bisphosphate carboxylase small chain), and glycolysis/gluconeogenesis (fructose-bisphosphate aldolase). Kyoto Encyclopedia of Genes and Genomes pathway analysis identified 168 proteins related to metabolic pathways, 41 proteins related to the biosynthesis of phenylpropanoids, and 36 proteins related to the biosynthesis of plant hormones, the biosynthesis of alkaloids derived from ornithine, lysine, and nicotinic acid, and photosynthesis in response to B. dothidea. Our findings provide insight into plant–pathogen interactions in resistant and susceptible poplar ecotypes infected with B. dothidea and could assist the development of novel strategies for fighting poplar canker disease.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1098
Author(s):  
Sahil Mehta ◽  
Amrita Chakraborty ◽  
Amit Roy ◽  
Indrakant K. Singh ◽  
Archana Singh

Plant diseases pose a substantial threat to food availability, accessibility, and security as they account for economic losses of nearly $300 billion on a global scale. Although various strategies exist to reduce the impact of diseases, they can introduce harmful chemicals to the food chain and have an impact on the environment. Therefore, it is necessary to understand and exploit the plants’ immune systems to control the spread of pathogens and enable sustainable agriculture. Recently, growing pieces of evidence suggest a functional myriad of lipids to be involved in providing structural integrity, intracellular and extracellular signal transduction mediators to substantial cross-kingdom cell signaling at the host–pathogen interface. Furthermore, some pathogens recognize or exchange plant lipid-derived signals to identify an appropriate host or development, whereas others activate defense-related gene expression. Typically, the membrane serves as a reservoir of lipids. The set of lipids involved in plant–pathogen interaction includes fatty acids, oxylipins, phospholipids, glycolipids, glycerolipids, sphingolipids, and sterols. Overall, lipid signals influence plant–pathogen interactions at various levels ranging from the communication of virulence factors to the activation and implementation of host plant immune defenses. The current review aims to summarize the progress made in recent years regarding the involvement of lipids in plant–pathogen interaction and their crucial role in signal transduction.


2021 ◽  
Author(s):  
Xingbo Bian ◽  
Yan Zhao ◽  
Shengyuan Xiao ◽  
He Yang ◽  
Yongzhong Han ◽  
...  

Abstract Background: Ginseng rusty root symptoms (GRS) is one of the primary diseases of ginseng. It leads to a severe decline in the quality of ginseng. Results: Compared with Healthy ginseng (HG), 949 metabolites and 9451 genes in diseased tissues were significantly changed at the metabolic and transcription levels. The metabolic patterns of the diseased tissues changed significantly, and organic acids, alkaloids, alcohols, and phenols may play a vital role in the response of ginseng to this disease. There were significant differences in the expression of plant hormone signal transduction, phenylpropanoid biosynthesis, peroxidase pathway, and multiple genes in the plant-pathogen interaction pathway.Conclusion: The current study performed a comparative metabolome and transcriptome analysis of GRS and HG. Based on the findings at the transcriptional and metabolic levels, the mechanism model of ginseng response to rusty root symptoms was established. Our results provide new insights into ginseng's response to rusty root symptoms, which will help reveal the potential molecular mechanisms of this disease in ginseng.


2021 ◽  
Author(s):  
Richard Breia ◽  
Artur Conde ◽  
Hélder Badim ◽  
Ana Margarida Fortes ◽  
Hernâni Gerós ◽  
...  

Abstract Sugars Will Eventually be Exported Transporters (SWEETs) have important roles in numerous physiological mechanisms where sugar efflux is critical, including phloem loading, nectar secretion, seed nutrient filling, among other less expected functions. They mediate low affinity and high capacity transport, and in angiosperms this family is composed by 20 paralogs on average. As SWEETs facilitate the efflux of sugars, they are highly susceptible to hijacking by pathogens, making them central players in plant–pathogen interaction. For instance, several species from the Xanthomonas genus are able to upregulate the transcription of SWEET transporters in rice (Oryza sativa), upon the secretion of transcription-activator-like effectors. Other pathogens, such as Botrytis cinerea or Erysiphe necator, are also capable of increasing SWEET expression. However, the opposite behavior has been observed in some cases, as overexpression of the tonoplast AtSWEET2 during Pythium irregulare infection restricted sugar availability to the pathogen, rendering plants more resistant. Therefore, a clear-cut role for SWEET transporters during plant–pathogen interactions has so far been difficult to define, as the metabolic signatures and their regulatory nodes, which decide the susceptibility or resistance responses, remain poorly understood. This fuels the still ongoing scientific question: what roles can SWEETs play during plant–pathogen interaction? Likewise, the roles of SWEET transporters in response to abiotic stresses are little understood. Here, in addition to their relevance in biotic stress, we also provide a small glimpse of SWEETs importance during plant abiotic stress, and briefly debate their importance in the particular case of grapevine (Vitis vinifera) due to its socioeconomic impact.


Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 594
Author(s):  
Qian-Xia Liu ◽  
Zhi-Ping Su ◽  
Hui-Hui Liu ◽  
Sheng-Ping Lu ◽  
Bing Ma ◽  
...  

Red Palm Weevil (RPW), Rhynchophorus ferrugineus Olivier, is a notorious pest, which infests palm trees and has caused great economic losses worldwide. At present, insecticide applications are still the main way to control this pest. However, pesticide resistance has been detected in the field populations of RPW. Thus, future management strategies based on the novel association biological control need be developed. Recent studies have shown that the intestinal tract of RPW is often colonized by multiple microbial species as mammals and model insects, and gut bacteria have been found to promote the growth, development and immune activity of RPW larvae by modulating nutrient metabolism. Furthermore, two peptidoglycan recognition proteins (PGRPs), PGRP-LB and PGRP-S1, can act as the negative regulators to modulate the intestinal immunity to maintain the homeostasis of gut bacteria in RPW larvae. Here, we summarized the current knowledge on the gut bacterial composition of RPW and their impact on the physiological traits of RPW larvae. In contrast with metazoans, it is much easier to make genetic engineered microbes to produce some active molecules against pests. From this perspective, because of the profound effects of gut bacteria on host phenotypes, it is promising to dissect the molecular mechanisms behind their effect on host physiology and facilitate the development of microbial resource-based management methods for pest control.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 656
Author(s):  
Jing Jin ◽  
Rui Shi ◽  
Ramsey Steven Lewis ◽  
Howard David Shew

Phytophthora nicotianae is a devastating oomycete plant pathogen with a wide host range. On tobacco, it causes black shank, a disease that can result in severe economic losses. Deployment of host resistance is one of the most effective means of controlling tobacco black shank, but adaptation to complete and partial resistance by P. nicotianae can limit the long-term effectiveness of the resistance. The molecular basis of adaptation to partial resistance is largely unknown. RNAseq was performed on two isolates of P. nicotianae (adapted to either the susceptible tobacco genotype Hicks or the partially resistant genotype K 326 Wz/Wz) to identify differentially expressed genes (DEGs) during their pathogenic interactions with K 326 Wz/Wz and Hicks. Approximately 69% of the up-regulated DEGs were associated with pathogenicity in the K 326 Wz/Wz-adapted isolate when sampled following infection of its adapted host K 326 Wz/Wz. Thirty-one percent of the up-regulated DEGs were associated with pathogenicity in the Hicks-adapted isolate on K 326 Wz/Wz. A broad spectrum of over-represented gene ontology (GO) terms were assigned to down-regulated genes in the Hicks-adapted isolate. In the host, a series of GO terms involved in nuclear biosynthesis processes were assigned to the down-regulated genes in K 326 Wz/Wz inoculated with K 326 Wz/Wz-adapted isolate. This study enhances our understanding of the molecular mechanisms of P. nicotianae adaptation to partial resistance in tobacco by elucidating how the pathogen recruits pathogenicity-associated genes that impact host biological activities.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1546
Author(s):  
Marta Budziszewska ◽  
Patryk Frąckowiak ◽  
Aleksandra Obrępalska-Stęplowska

Bradysia species, commonly known as fungus gnats, are ubiquitous in greenhouses, nurseries of horticultural plants, and commercial mushroom houses, causing significant economic losses. Moreover, the insects from the Bradysia genus have a well-documented role in plant pathogenic fungi transmission. Here, a study on the potential of Bradysia impatiens to acquire and transmit the peanut stunt virus (PSV) from plant to plant was undertaken. Four-day-old larvae of B. impatiens were exposed to PSV-P strain by feeding on virus-infected leaves of Nicotiana benthamiana and then transferred to healthy plants in laboratory conditions. Using the reverse transcription-polymerase chain reaction (RT-PCR), real-time PCR (RT-qPCR), and digital droplet PCR (RT-ddPCR), the PSV RNAs in the larva, pupa, and imago of B. impatiens were detected and quantified. The presence of PSV genomic RNA strands as well as viral coat protein in N. benthamiana, on which the viruliferous larvae were feeding, was also confirmed at the molecular level, even though the characteristic symptoms of PSV infection were not observed. The results have shown that larvae of B. impatiens could acquire the virus and transmit it to healthy plants. Moreover, it has been proven that PSV might persist in the insect body transstadially. Although the molecular mechanisms of virion acquisition and retention during insect development need further studies, this is the first report on B. impatiens playing a potential role in plant virus transmission.


Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 226
Author(s):  
Siying Fu ◽  
Yujie Duan ◽  
Siqi Wang ◽  
Yipeng Ren ◽  
Wenjun Bu

Riptortus pedestris (Hemiptera: Alydidae) is a major agricultural pest in East Asia that causes considerable economic losses to the soybean crop each year. However, the molecular mechanisms governing the growth and development of R. pedestris have not been fully elucidated. In this study, the Illumina HiSeq6000 platform was employed to perform de novo transcriptome assembly and determine the gene expression profiles of this species across all developmental stages, including eggs, first-, second-, third-, fourth-, and fifth-instar nymphs, and adults. In this study, a total of 60,058 unigenes were assembled from numerous raw reads, exhibiting an N50 length of 2126 bp and an average length of 1199 bp, and the unigenes were annotated and classified with various databases, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Groups (COG), and Gene Ontology (GO). Furthermore, various numbers of differentially expressed genes (DEGs) were calculated through pairwise comparisons of all life stages, and some of these DEGs were associated with immunity, metabolism, and development by GO and KEGG enrichment. In addition, 35,158 simple sequence repeats (SSRs) and 715,604 potential single nucleotide polymorphisms (SNPs) were identified from the seven transcriptome libraries of R. pedestris. Finally, we identified and summarized ten wing formation-related signaling pathways, and the molecular properties and expression levels of five wing development-related genes were analyzed using quantitative real-time PCR for all developmental stages of R. pedestris. Taken together, the results of this study may establish a foundation for future research investigating developmental processes and wing formation in hemimetabolous insects and may provide valuable data for pest control efforts attempting to reduce the economic damage caused by this pest.


Sign in / Sign up

Export Citation Format

Share Document