Distribution of Wheat Powdery Mildew Incidence in Field Plots and Relationship to Disease Severity

1981 ◽  
Vol 71 (10) ◽  
pp. 1015 ◽  
Author(s):  
D. I. Rouse
Plant Disease ◽  
2018 ◽  
Vol 102 (10) ◽  
pp. 1981-1988 ◽  
Author(s):  
Wei Liu ◽  
Xueren Cao ◽  
Jieru Fan ◽  
Zhenhua Wang ◽  
Zhengyuan Yan ◽  
...  

High-resolution aerial imaging with an unmanned aerial vehicle (UAV) was used to quantify wheat powdery mildew and estimate grain yield. Aerial digital images were acquired at Feekes growth stage (GS) 10.5.4 from flight altitudes of 200, 300, and 400 m during the 2009–10 and 2010–11 seasons; and 50, 100, 200, and 300 m during the 2011–12, 2012–13, and 2013–14 seasons. The image parameter lgR was consistently correlated positively with wheat powdery mildew severity and negatively with wheat grain yield for all combinations of flight altitude and year. Fitting the data with random coefficient regression models showed that the exact relationship of lgR with disease severity and grain yield varied considerably from year to year and to a lesser extent with flight altitude within the same year. The present results raise an important question about the consistency of using remote imaging information to estimate disease severity and grain yield. Further research is needed to understand the nature of interyear variability in the relationship of remote imaging data with disease or grain yield. Only then can we determine how the remote imaging tool can be used in commercial agriculture.


2011 ◽  
Vol 396-398 ◽  
pp. 2012-2017
Author(s):  
Shi Zhou Du ◽  
Wen Jiang Huang ◽  
Rong Fu Wang ◽  
Ju Hua Luo ◽  
Jin Ling Zhao ◽  
...  

The hyperspectral bands sensitive to the disease severity levels of wheat powdery mildew was elucidated in this study. The disease severity levels of wheat powdery mildew were also inverted by the extracting characteristic parameters, which provided a basis for detecting the wheat powdery mildew using hyperspectral data. The spectral data of single leaves was obtained at heading stage, the spectral characteristic parameters and sensitivity of wheat leaves were analyzed qualitatively and quantitatively. The result showed that spectral reflectivity within the visible wavebands (400—760 nm) was increased with the aggravating disease severity levels. The spectral sensitivity reached the maximum value within visible wavebands and the optimal sensitive bands for detecting disease severity levels was 630—680nm. After the spectrum was continuum removal-treated, the absorption position moved to longer wavelength with the aggravating disease severity levels and the disease severity levels showed extremely significant negative correlations with the absorption height, absorption width and absorption area. The linear regression equation has high determination coefficient and low root mean square error using the right AAI as independent variable to establish the model. Moreover, the precision verification test also showed that the model performed best in monitoring wheat powdery mildew. In conclusion, disease severity levels of wheat powdery mildew could be inverted effectively by hyperspectral technology, which provides the foundation for detecting wheat powdery mildew.


2021 ◽  
Vol 13 (18) ◽  
pp. 3753
Author(s):  
Wei Liu ◽  
Chaofei Sun ◽  
Yanan Zhao ◽  
Fei Xu ◽  
Yuli Song ◽  
...  

Both wheat powdery mildew severities and nitrogen input levels can lead to changes in spectral reflectance, but they have been rarely studied simultaneously for their effect on spectral reflectance. To determine the effects and influences of different nitrogen input levels on monitoring wheat powdery mildew and estimating yield by near-ground hyperspectral remote sensing, Canopy hyperspectral reflectance data acquired at Feekes growth stage (GS) 10.5.3, 10.5.4, and 11.1 were used to monitor wheat powdery mildew and estimate grain yield under different nitrogen input levels during the 2016–2017, 2017–2018, 2018–2019 and 2019–2020 seasons. The relationships of powdery mildew and grain yield with vegetation indices (VIs) derived from spectral reflectance data across the visible (VIS) and near-infrared (NIR) regions of the spectrum were studied. The relationships of canopy spectral reflectance or first derivative spectral reflectance with powdery mildew did not differ under different nitrogen input levels. However, the dynamics of VIs differed in their sensitivities to nitrogen input levels, disease severity, grain yield, The area of the red edge peak (Σdr680–760 nm) was a better overall predictor for both disease severity and grain yield through linear regression models. The slope parameter estimates did not differ between the two nitrogen input levels at each GSs. Hyperspectral indices can be used to monitor wheat powdery mildew and estimate grain yield under different nitrogen input levels, but such models are dependent on GS and year, further research is needed to consider how to incorporate the growth stage and year-to-year variation into future applications.


Plant Disease ◽  
2015 ◽  
Vol 99 (3) ◽  
pp. 395-400 ◽  
Author(s):  
Xueren Cao ◽  
Dongming Yao ◽  
Xiangming Xu ◽  
Yilin Zhou ◽  
Kejian Ding ◽  
...  

Disease severity of wheat powdery mildew, caused by Blumeria graminis f. sp. tritici, was recorded weekly in fungicide-free field plots for three successive seasons from 2009 to 2012 in Langfang City, Hebei Province, China. Airborne conidia of B. graminis f. sp. tritici were trapped using a volumetric spore sampler, and meteorological data were collected using an automatic weather station. Cumulative logit models were used to relate the development of wheat powdery mildew to weather variables and airborne conidia density. Density of airborne conidia was the most important variate; further addition of weather variables, although statistically significant, increased model performance only slightly. A model based on variables derived from temperature and humidity had a generalized R2 of 72.4%. Although there were significant differences in model parameters among seasons, fine adjustment did not increase model performance significantly.


2017 ◽  
Vol 4 (2) ◽  
Author(s):  
SUDHEENDRA A. ASHTAPUTRE

A field experiment was conducted during kharif, 2005 at Agricultural Research station, Devihosur, Haveri, Karnataka to assess the progress of powdery mildew at different time interval of sowing dates. Totally 20 different dates of sowings were imposed in the experiment at an interval of 10 days. The crop sown on last week of May to mid of June recorded minimum disease severity compared to rest of the date of sowings. This clearly indicated that crop sown during this period suffers less, which may be due to low inoculum potential, whereas late sown crop suffers more because of the readily available inoculum in the early sown crops. Low disease severity in last week of May to mid of June sowing may be attributed to the non-congenial weather factors for the development of the disease.


2008 ◽  
Vol 43 (No. 3) ◽  
pp. 87-96 ◽  
Author(s):  
A. Dreiseitl

The results of evaluation of powdery mildew resistance in winter barley varieties in 285 Czech Official Trials conducted at 20 locations were analysed. Over the period, the number of varieties tested per year increased from four to seven in 1976−1985 to 53−61 in 2002−2005. To assess the resistance of varieties, only trials with sufficient disease severity were used. In 1976−2000, six varieties (1.7% of the varieties tested in the given years) ranked among resistant (average resistance of a variety in a year > 7.5) including NR-468 possessing the gene <i>Mla13</i>, KM-2099 with <i>mlo</i> and Marinka with the genes <i>Mla7</i>, <i>MlaMu2</i>. In 2001−2005, already 33 varieties (16.9%) ranked among resistant, of which Traminer possessing the genes <i>Ml(St)</i> and <i>Ml(IM9 </i> dominated. The proportion of susceptible varieties (average resistance ≤ 5.5) did not change in the two mentioned periods. Two-rowed varieties began to be tested as late as in 1990 (the first variety was Danilo), however, no difference was found in the resistance of two- and six-rowed varieties. Using an example of two pairs of varieties (Dura-Miraj and Marinka-Tiffany) with identical genes for specific resistance but with different resistance in the field, the efficiency of non-specific resistance is discussed. The resistance of domestic and foreign varieties was similar in 1994−2000; however, in 2001−2005 the difference was 0.75 point to disadvantage of domestic ones.


2021 ◽  
Author(s):  
Deshan Xie ◽  
Xuewei Cai ◽  
Chunping Yang ◽  
Linjun Xie ◽  
Guangwei Qin ◽  
...  

2021 ◽  
Vol 693 (1) ◽  
pp. 012124
Author(s):  
Jinling Zhao ◽  
Guomin Chu ◽  
Hao Yan ◽  
Lei Hu ◽  
Yongan Xue

Sign in / Sign up

Export Citation Format

Share Document