scholarly journals Pathogenicity and In Planta Mycotoxin Accumulation Among Members of the Fusarium graminearum Species Complex on Wheat and Rice

2005 ◽  
Vol 95 (12) ◽  
pp. 1397-1404 ◽  
Author(s):  
Rubella S. Goswami ◽  
H. Corby Kistler

Fusarium head blight (FHB), or scab, is a destructive disease of small grains caused by members of the Fusarium graminearum species complex, comprised of at least nine distinct, cryptic species. Members of this complex are known to produce mycotoxins including the trichothecenes deoxynivalenol (DON) along with its acetylated derivatives and nivalenol (NIV). In this study, 31 strains, belonging to eight species of this complex and originating from diverse hosts or substrates, were tested for differences in aggressiveness and mycotoxin production. Large variation among strains, both in terms of their aggressiveness and the ability to produce trichothecenes on a susceptible cultivar of wheat was found; variation appears to be a strain-specific rather than species-specific characteristic. While pathogenicity was not influenced by the type of mycotoxin produced, a significant correlation was observed between the amount of the dominant trichothecene (DON and its acetylated forms or NIV) produced by each strain and its level of aggressiveness on wheat. Some isolates also were tested for their ability to infect rice cv. M201, commonly grown in the United States. While tested strains were capable of infecting rice under greenhouse conditions and causing significant amount of disease, no trichothecenes could be detected from the infected rice florets.

2017 ◽  
Author(s):  
C.P. Nicolli ◽  
F.J. Machado ◽  
P. Spolti ◽  
E.M. Del Ponte

AbstractFusarium graminearum of the 15-acetyl(A)deoxynivalenol(D0N) chemotype is the main cause of Fusarium head blight (FHB) of wheat in south of Brazil. However, 3-ADON and nivalenol(NIV) chemotypes have been found in other members of the species complex causing FHB in wheat. To improve our understanding of the pathogen ecology, we assessed a range of fitness-related traits in a sample of 30 strains representatives of 15-ADON (F. graminearum), 3-ADON (F. cortaderiae and F. austroamericanum) and NIV (F. meridionale and F. cortaderiae). These included: perithecia formation on three cereal-based substrates, mycelial growth at two suboptimal temperatures, sporulation and germination, pathogenicity towards a susceptible and a moderately resistant cultivar and sensitivity to tebuconazole. The most important trait favoring F. graminearum was its 2x higher sexual fertility (> 40% PPI = perithecia production index) than the other species (< 30% PPI); PPI varied among substrates (maize > rice > wheat). In addition, sensitivity to tebuconazole appeared lower in F. graminearum which had the only strain with EC50 > 1 ppm. In the pathogenicity assays, the DON-producers were generally more aggressive (1.5 to 2x higher final severity) towards the two cultivars, with 3-ADON or 15-ADON leading to higher area under the severity curve than the NIV strains in the susceptible and moderately resistant cv., respectively. There was significant variation among strains of a same species with regards asexual fertility (mycelial growth, macroconidia production and germination), which suggest a strain-rather than a species-specific differences. These results contribute new knowledge to improve our understanding of the pathogen-related traits that may explain the dominance of certain members of the species complex in specific wheat agroecosystems.


Plant Disease ◽  
2018 ◽  
Vol 102 (7) ◽  
pp. 1341-1347 ◽  
Author(s):  
Camila Primieri Nicolli ◽  
Franklin Jackson Machado ◽  
Piérri Spolti ◽  
Emerson M. Del Ponte

Fusarium graminearum of the 15-acetyl-deoxynivalenol (15-ADON) chemotype is the main cause of Fusarium head blight (FHB) of wheat in southern Brazil. However, 3-ADON and nivalenol (NIV) chemotypes have been found in other members of the species complex causing FHB in wheat. To improve our understanding of the pathogen biology and ecology, we assessed a range of fitness-related traits in a sample of 30 strains representatives of 15-ADON (F. graminearum), 3-ADON (F. cortaderiae and F. austroamericanum), and NIV (F. meridionale and F. cortaderiae). These included perithecia formation on three cereal-based substrates, mycelial growth at two suboptimal temperatures, sporulation and germination, pathogenicity toward a susceptible and a moderately resistant cultivar, and sensitivity to tebuconazole. The most important trait favoring F. graminearum was a two times higher sexual fertility (>40% perithecial production index [PPI]) than the other species (<30% PPI); PPI varied among substrates (maize > rice > wheat). In addition, sensitivity to tebuconazole appeared lower in F. graminearum, which had the only strain with effective fungicide concentration to reduce 50% of mycelial growth >1 ppm. In the pathogenicity assays, the deoxynivalenol producers were generally more aggressive (1.5 to 2× higher final severity) toward the two cultivars, with 3-ADON or 15-ADON leading to higher area under the severity curve than the NIV strains in the susceptible and moderately resistant cultivars, respectively. There was significant variation among strains of the same species with regards asexual fertility (mycelial growth, macroconidia production, and germination), which suggested a strain- rather than a species-specific difference. These results contribute new knowledge to improve our understanding of the pathogen-related traits that may explain the dominance of certain members of the species complex in specific wheat agroecosystems.


2016 ◽  
Vol 6 (12) ◽  
pp. 3883-3892 ◽  
Author(s):  
Haruhisha Suga ◽  
Koji Kageyama ◽  
Masafumi Shimizu ◽  
Misturo Hyakumachi

Abstract Members of the Fusarium graminearum species complex (Fg complex or FGSC) are the primary pathogens causing Fusarium head blight in wheat and barley worldwide. A natural pathogenicity mutant (strain 0225022) was found in a sample of the Fg complex collected in Japan. The mutant strain did not induce symptoms in wheat spikes beyond the point of inoculation, and did not form perithecia. No segregation of phenotypic deficiencies occurred in the progenies of a cross between the mutant and a fully pathogenic wild-type strain, which suggested that a single genetic locus controlled both traits. The locus was mapped to chromosome 2 by using sequence-tagged markers; and a deletion of ∼3 kb was detected in the mapped region of the mutant strain. The wild-type strain contains the FGSG_02810 gene, encoding a putative glycosylphosphatidylinositol anchor protein, in this region. The contribution of FGSG_02810 to pathogenicity and perithecium formation was confirmed by complementation in the mutant strain using gene transfer, and by gene disruption in the wild-type strain.


Plant Disease ◽  
2019 ◽  
Vol 103 (5) ◽  
pp. 929-937 ◽  
Author(s):  
Yabing Duan ◽  
Xian Tao ◽  
Huahua Zhao ◽  
Xuemei Xiao ◽  
Meixia Li ◽  
...  

Fusarium graminearum species complex (FGSC), causing Fusarium head blight (FHB) of wheat, has species-specific geographical distributions in wheat-growing regions. In recent years, benzimidazole resistance of FHB pathogens has been largely widespread in China. Although the demethylation inhibitor fungicide metconazole has been used for FHB control in some countries, no information about metconazole sensitivity of Chinese FHB pathogen populations and efficacy of metconazole in FHB control in China is available. In this study, the sensitivity of FGSC to metconazole was measured with 32 carbendazim-sensitive strains and 35 carbendazim-resistant strains based on mycelial growth. The 50% effective concentration values of 67 strains were normally distributed and ranged from 0.0209 to 0.0838 μg ml−1, with a mean of 0.0481 ± 0.0134 μg ml−1. No significant difference in metconazole sensitivity was observed between carbendazim-sensitive and -resistant populations. An interactive effect of metconazole and phenamacril, a novel cyanoacrilate fungicide approved in China against Fusarium spp., in inhibiting mycelial growth showed an additive interaction at different ratios. Furthermore, field trials to evaluate the effect of metconazole and metconazole + phenamacril treatments in FHB control, deoxynivalenol (DON) production, and grain yields were performed. Compared with the fungicides carbendazim and phenamacril currently used in China, metconazole exhibits a better efficacy for FHB control, DON production, and grain yields, and dramatically reduces use dosages of chemical compounds in the field. The mixture of metconazole and phenamacril at ratios of 2:3 and 1:2 showed the greatest efficacy for FHB control, DON production, and grain yields among all the fungicide treatments but its use dosages were higher in comparison with metconazole alone. In addition, FHB control, grain yields, and DON levels were significantly correlated with each other, showing that visual disease indices can be used as an indicator of grain yields and DON contamination. Meanwhile, the frequency of carbendazim-resistant alleles in F. graminearum populations was dramatically reduced after metconazole and phenamacril alone and the mixture of metconazole and phenamacril applications, indicating that metconazole and a mixture of metconazole and phenamacril can be used for carbendazim resistance management of FHB in wheat. Overall, the findings of this study provide important data for resistance management of FHB and reducing DON contamination in wheat grains.


2016 ◽  
Vol 9 (5) ◽  
pp. 685-700 ◽  
Author(s):  
M. Vaughan ◽  
D. Backhouse ◽  
E.M. Del Ponte

Fusarium head blight (FHB) of wheat, caused mainly by a few members of the Fusarium graminearum species complex (FGSC), is a major threat to agricultural grain production, food safety, and animal health. The severity of disease epidemics and accumulation of associated trichothecene mycotoxins in wheat kernels is strongly driven by meteorological factors. The potential impacts of change in climate are reviewed from the perspective of the FGSC life cycle and host resistance mechanisms influenced by abiotic pressures at the ecological, physiological and molecular level. Alterations in climate patterns and cropping systems may affect the distribution, composition and load of FGSC inoculum, but quantitative information is lacking regarding the differential responses among FGSC members. In general, the coincidence of wet and warm environment during flowering enhances the risk of FHB epidemics, but the magnitude and direction of the change in FHB and mycotoxin risk will be a consequence of a multitude of effects on key processes affecting inoculum dynamics and host susceptibility. Rates of residue decomposition, inoculum production and dispersal may be significantly altered by changes in crop rotations, atmospheric carbon dioxide concentration ([CO2]), temperature and precipitation patterns, but the impact may be much greater for regions where inoculum is more limited, such as temperate climates. In regions of non-limiting inoculum, climate change effects will likely be greater on the pathogenic rather than on the saprophytic phase. Although the mechanisms by which abiotic stress influences wheat defences against Fusarium species are unknown, available data would suggest that wheat may be more susceptible to Fusarium infection under future climate conditions. Additional research in this area should be a priority so that breeding efforts and climate resilient management strategies can be developed.


Plant Disease ◽  
2020 ◽  
Vol 104 (8) ◽  
pp. 2138-2143
Author(s):  
Fei Dong ◽  
Xiao Zhang ◽  
Jian Hong Xu ◽  
Jian Rong Shi ◽  
Yin-Won Lee ◽  
...  

Members of Fusarium graminearum species complex (FGSC) are the major pathogens that cause Fusarium head blight (FHB) in cereals worldwide. Symptoms of FHB on rice, including dark staining or browning of rice glumes, were recently observed in Jiangsu Province, China. To improve our understanding of the pathogens involved, 201 FGSC isolates were obtained from freshly harvested rice samples and identified by phylogenetic analyses. Among the 201 FGSC isolates, 196 were F. asiaticum and the remaining 5 were F. graminearum. Trichothecene chemotype and chemical analyses showed that 68.4% of the F. asiaticum isolates were the 3-acetyldeoxynivalenol (3ADON) chemotype and the remainder were the nivalenol (NIV) chemotype. All of the F. graminearum isolates were the 15-acetyldeoxynivalenol chemotype. Pathogenicity assays showed that both the 3ADON and NIV chemotypes of F. asiaticum could infect wheat and rice spikes. FHB severity and trichothecene toxin analysis revealed that F. asiaticum with the NIV chemotype was less aggressive than that with the 3ADON chemotype in wheat, while the NIV-producing strains were more virulent than the 3ADON-producing strains in rice. F. asiaticum isolates with different chemotypes did not show significant differences in mycelial growth, sporulation, conidial dimensions, or perithecial production. These findings would provide useful information for developing management strategies for the control of FHB in China.


Plant Disease ◽  
2011 ◽  
Vol 95 (1) ◽  
pp. 31-37 ◽  
Author(s):  
Peter Horevaj ◽  
Liane R. Gale ◽  
Eugene A. Milus

Head blight of wheat in the United States is caused primarily by the deoxynivalenol (DON)-producing chemotype of Fusarium graminearum. However, the discovery of the nivalenol (NIV) chemotype of F. graminearum in Louisiana and Arkansas necessitates having resistance in wheat to both chemotypes. The objectives of this research were to quantify resistance of selected winter wheat lines to initial infection and pathogen spread within spikes, to determine whether wheat lines selected for resistance to the DON chemotype also have resistance to the NIV chemotype, and to improve the methods for quantifying resistance to initial infection. A susceptible check (Coker 9835) and 15 winter wheat lines, which are adapted to the southeastern United States and possess diverse sources of head blight resistance, were evaluated for head blight resistance in a series of greenhouse and growth-chamber experiments. Significant levels of resistance to both initial infection and spread within a spike were found among the lines, and lines with resistance to isolates of the DON chemotype had even higher levels of resistance to isolates of the NIV chemotype. Quantifying resistance to initial infection was improved by standardizing the inoculum and environmental conditions. Additional information related to resistance to spread within a spike was obtained by calculating the area under the disease progress curve from 7 to 21 days after inoculation.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 1012-1012 ◽  
Author(s):  
M. L. Ellis ◽  
G. P. Munkvold

Fusarium graminearum is an economically important pathogen that causes Fusarium head blight of wheat, barley, and oat, and Gibberella ear and stalk rot of maize. More recently, F. graminearum was reported as a soybean seedling and root pathogen in North America (1,5), causing seed decay, damping-off, and brown to reddish-brown root rot symptoms. Type B trichothecene mycotoxins are commonly produced by F. graminearum, which can be categorized into three trichothecene genotypes; those that produce 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), or nivalenol (NIV). The 15-ADON genotype is dominant in populations from small grains and maize in North America (4), but the 3-ADON genotype has recently been found (4). F. graminearum was known as a pathogen of wheat and maize in North America for over a century before it was reported as a soybean pathogen. Therefore, we hypothesized that recent reports on soybean could be associated with the appearance of the 3-ADON genotype. The objective of this research was to determine the trichothecene genotype of F. graminearum isolates from soybean in the United States. Thirty-eight isolates from soybean were evaluated. Twenty-seven isolates came from a 3-year survey for Fusarium root rot from 2007 to 2009 in Iowa. Other isolates (Ahmad Fakhoury, Southern Illinois University, Carbondale) were collected from soybean seedlings during a multi-state survey in 2012, and included three isolates from Illinois, three from Indiana, and five from Nebraska. Species identification and lineage of F. graminearum were confirmed by sequencing the translation elongation factor gene (EF1-α) using EF-1H and EF-2T primers. A maximum likelihood analysis of the EF1-α, including voucher strains from nine lineages of F. graminearum (2), placed all 38 isolates into lineage 7, F. graminearum sensu stricto (representative GenBank accessions KJ415349 to KJ415352). To determine the trichothecene genotype of each isolate we used three multiplex PCR assays. The first two assays targeted a portion of trichothecene biosynthesis genes Tri3 and Tri12 (4), while the third assay targeted portions of the Tri3, Tri5, and Tri7 genes (3). The PCR for the first two assays was conducted as described by Ward et al. (4) using four sets of primers: 3CON, 3NA, 3D15A, and 3D3A; and 12CON, 12NF, 12-15F, and 12-3F for the Tri3 and Tri12 genes, respectively. The PCR for the third assay was conducted as described by Quarta et al. (3) using the following primers: Tri3F971, Tri3F1325, Tri3R1679, Tri7F340, Tri7R965, 3551H, and 4056H. The amplification products were analyzed by gel electrophoresis. All 38 isolates produced amplicons consistent with the 15-ADON genotype; ~610 and 670 bp for the Tri3 and Tri12 genes, respectively (4), and two amplicons of ~708 and 525 bp for the Tri3/Tri5 genes (3). Our results indicated that the dominant trichothecene genotype among isolates of F. graminearum from soybean is 15-ADON, and the introduction of 3-ADON isolates does not explain the recent host shift of F. graminearum to soybean in North America. To our knowledge, this is the first assessment of trichothecene genotypes in F. graminearum populations from soybean from the United States. References: (1) K. E. Broders et al. Plant Dis. 91:1155, 2007. (2) K. O'Donnell et al. Fungal Gen. Biol. 41:600, 2004. (3) A. Quarta et al. FEMS Microbiol. Lett. 259:7, 2006. (4) T. D. Ward et al. Fungal Gen. Biol. 45:473, 2008. (5) A. G. Zue et al. Can. J. Plant Pathol. 29:35, 2007.


2011 ◽  
Vol 101 (1) ◽  
pp. 124-134 ◽  
Author(s):  
Liane Rosewich Gale ◽  
Stephen A. Harrison ◽  
Todd J. Ward ◽  
Kerry O'Donnell ◽  
Eugene A. Milus ◽  
...  

U.S. populations of the Fusarium graminearum clade cause head blight on wheat and barley and usually contaminate grain with the trichothecene mycotoxin deoxynivalenol (DON). Recently, however, individual nivalenol (NIV)-type isolates from the United States were described that belonged to either the newly described species F. gerlachii or the genetically distinct Gulf Coast population of F. graminearum sensu stricto (s.s.). Here, we describe the discovery of NIV-type F. graminearum s.s. populations that were found in high proportion (79%) among isolates from small-grain-growing regions of Louisiana. We genotyped 237 isolates from Louisiana with newly developed polymerase chain reaction (PCR) restriction fragment length polymorphism markers and multiplex PCR primers that distinguish among the three trichothecene types: the two DON types (15ADON and 3ADON) and NIV. These isolates were compared with 297 isolates from 11 other U.S. states, predominantly from the Midwest. Using Bayesian-model-based clustering, we discovered a southern Louisiana population of F. graminearum s.s. that was genetically distinct from the previously recognized pathogen population in the Midwest (MW15ADON population). Population membership was correlated with trichothecene type. Most isolates from the southern Louisiana population were of the NIV type, while the majority of the isolates from the Midwest were of the 15ADON type. A smaller proportion of isolates from Louisiana belonged to the previously described Gulf Coast population that was mostly of the 3ADON type. The NIV type was also identified in collections from Arkansas (12%), North Carolina (40%), and Missouri (2%), with the collections from Arkansas and North Carolina being small and unrepresentative. F. asiaticum was detected from the two southern Louisiana parishes Acadia and Alexandria. All identified 41 F. asiaticum isolates were of the NIV type. Greenhouse tests indicated that U.S. NIV types accumulated four times less trichothecene toxin than DON types on inoculated wheat. This is the first report of NIV-type populations of F. graminearum s. s. and F. asiaticum in the United States.


Sign in / Sign up

Export Citation Format

Share Document