trichothecene mycotoxin
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 24)

H-INDEX

31
(FIVE YEARS 4)

Author(s):  
Amechi Oyeka ◽  
Rose Amasiani

This study was carried out to determine the fungal and mycotoxins contamination of 36 Wheat (Triticum aestivium) samples purchased randomly from the seller of the agricultural produce in local markets of Anambra State, Nigeria. Results from the studies showed that two hundred and three fungal isolates consisting of 18 species of moulds and 5 species of yeasts contaminated the wheat samples at varying degrees. For moulds, Aspergillus species contaminated the samples  mostly with (28) isolates followed by Penicillum species (19) isolates while Verticillium species and Cladosporium species had equal least contaminations with (3) isolates each. Among the yeast species, Candida rugosahad the highest number of contamination with (37) isolates followed by Cryptococcus laurentii (31) isolates while Candida stellatoides (9) isolates had the least contamination. Twenty-four fungal metabolites were also recovered. The concentration of trichothecene mycotoxin Deoxynivalenol (2067µg/kg), a protein synthesis and cell proliferation inhibitor in animals exceeded the maximum acceptable limits for human consumption. It can be deduced therefore that wheat circulating in Anambra State, Nigeria are variously contaminated with different xerophilic moulds and mycotoxins which can exert adverse health problems to consumers. Keyword: Wheat samples, fungal contaminants, multi-mycotoxins and market zones


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6868
Author(s):  
Edyta Janik ◽  
Marcin Niemcewicz ◽  
Marcin Podogrocki ◽  
Michal Ceremuga ◽  
Maksymilian Stela ◽  
...  

Among trichothecenes, T-2 toxin is the most toxic fungal secondary metabolite produced by different Fusarium species. Moreover, T-2 is the most common cause of poisoning that results from the consumption of contaminated cereal-based food and feed reported among humans and animals. The food and feed most contaminated with T-2 toxin is made from wheat, barley, rye, oats, and maize. After exposition or ingestion, T-2 is immediately absorbed from the alimentary tract or through the respiratory mucosal membranes and transported to the liver as a primary organ responsible for toxin's metabolism. Depending on the age, way of exposure, and dosage, intoxication manifests by vomiting, feed refusal, stomach necrosis, and skin irritation, which is rarely observed in case of mycotoxins intoxication. In order to eliminate T-2 toxin, various decontamination techniques have been found to mitigate the concentration of T-2 toxin in agricultural commodities. However, it is believed that 100% degradation of this toxin could be not possible. In this review, T-2 toxin toxicity, metabolism, and decontamination strategies are presented and discussed.


Toxins ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 685
Author(s):  
Kinga Anna Urbanek ◽  
Karolina Kowalska ◽  
Dominika Ewa Habrowska-Górczyńska ◽  
Kamila Domińska ◽  
Agata Sakowicz ◽  
...  

Deoxynivalenol (DON) is a type-B trichothecene mycotoxin produced by Fusarium species, reported to be the most common mycotoxin present in food and feed products. DON is known to affect the production of testosterone, follicle stimulating hormone (FSH) and luteinizing hormone (LH) in male rats, consequently affecting reproductive endpoints. Our previous study showed that DON induces oxidative stress in prostate cancer (PCa) cells, however the effect of DON on the intratumor steroidogenesis in PCa and normal prostate cells was not investigated. In this study human normal (PNT1A) and prostate cancer cell lines with different hormonal sensitivity (PC-3, DU-145, LNCaP) were exposed to DON treatment alone or in combination with dehydroepiandrosterone (DHEA) for 48 h. The results of the study demonstrated that exposure to DON alone or in combination with DHEA had a stimulatory effect on the release of estradiol and testosterone and also affected progesterone secretion. Moreover, significant changes were observed in the expression of genes related to steroidogenesis. Taken together, these results indicate that DON might affect the process of steroidogenesis in the prostate, demonstrating potential reproductive effects in humans.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Thomas Miedaner ◽  
Andrea Vasquez ◽  
Valheria Castiblanco ◽  
Hilda Elena Castillo ◽  
Nora Foroud ◽  
...  

Abstract Background Fusarium culmorum is an important pathogen causing head blight of cereals in Europe. This disease is of worldwide importance leading to reduced yield, grain quality, and contamination by mycotoxins. These mycotoxins are harmful for livestock and humans; therefore, many countries have strict regulatory limits for raw materials and processed food. Extensive genetic diversity is described among field populations of F. culmorum isolates for aggressiveness and production of the trichothecene mycotoxin deoxynivalenol (DON). However, the causes for this quantitative variation are not clear, yet. We analyzed 92 isolates sampled from different field populations in Germany, Russia, and Syria together with an international collection for aggressiveness and DON production in replicated field experiments at two locations in two years with two hosts, wheat and rye. The 30x coverage whole-genome resequencing of all isolates resulted in the identification of 130,389 high quality single nucleotide polymorphisms (SNPs) that were used for the first genome-wide association study in this phytopathogenic fungus. Results In wheat, 20 and 27 SNPs were detected for aggressiveness and DON content, respectively, of which 10 overlapped. Additionally, two different SNPs were significantly associated with aggressiveness in rye that were among those SNPs being associated with DON production in wheat. Most of the SNPs explained only a small proportion of genotypic variance (pG), however, four SNPs were associated with major quantitative trait loci (QTLs) with pG ranging from 12 to 48%. The QTL with the highest pG was involved in DON production and associated with a SNP most probably located within the Tri4 gene. Conclusions The diversity of 92 isolates of F. culmorum were captured using a heuristic approach. Key phenotypic traits, SNPs, and candidate genes underlying aggressiveness and DON production were identified. Clearly, many QTLs are responsible for aggressiveness and DON content in wheat, both traits following a quantitative inheritance. Several SNPs involved in DON metabolism, among them the Tri4 gene of the trichothecene pathway, were inferred as important source of variation in fungal aggressiveness. Using this information underlying the phenotypic variation will be of paramount importance in evaluating strategies for successful resistance breeding.


Toxins ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 217
Author(s):  
Insaf Riahi ◽  
Anna Maria Pérez-Vendrell ◽  
Antonio J. Ramos ◽  
Joaquim Brufau ◽  
Enric Esteve-Garcia ◽  
...  

Deoxynivalenol (DON), a trichothecene mycotoxin produced by Fusarium species, is the most widespread mycotoxin in poultry feed worldwide. Long term-exposure from low to moderate DON concentrations can produce alteration in growth performance and impairment of the health status of birds. To evaluate the efficacy of mycotoxin-detoxifying agent alleviating the toxic effects of DON, the most relevant biomarkers of toxicity of DON in chickens should be firstly determined. The specific biomarker of exposure of DON in chickens is DON-3 sulphate found in different biological matrices (plasma and excreta). Regarding the nonspecific biomarkers called also biomarkers of effect, the most relevant ones are the impairment of the productive parameters, the intestinal morphology (reduction of villus height) and the enlargement of the gizzard. Moreover, the biomarkers of effect related to physiology (decrease of blood proteins, triglycerides, hemoglobin, erythrocytes, and lymphocytes and the increase of alanine transaminase (ALT)), immunity (response to common vaccines and release of some proinflammatory cytokines) and welfare status of the birds (such as the increase of Thiobarbituric acid reactive substances (TBARS) and the stress index), has been reported. This review highlights the available information regarding both types of biomarkers of DON toxicity in chickens.


Author(s):  
Zhao Jin ◽  
Shyam Solanki ◽  
Gazala Ameen ◽  
Thomas Gross ◽  
Roshan Sharma Poudel ◽  
...  

Fusarium head blight (FHB) and the occurrence of mycotoxins is the largest food safety threat to malting and brewing grains. Worldwide surveys of commercial beers have reported that the trichothecene mycotoxin deoxynivalenol (DON) is the most frequent contaminant in beer. Although the DON content of grain generally declines during steeping due to its solubilization, Fusarium can continue to grow and produce DON from steeping through the early kilning stage of malting. DON present on malt is largely extracted into beer. The objective of the current study was to localize the growth of Fusarium within FHB infected kernels by developing an improved method and to associate fungal growth with the production of DON during malting. FHB infected barley, wheat, rye, and triticale grains that exhibited large increases in the amount of Fusarium Tri5 DNA and trichothecene mycotoxins following malting were screened for hyphal localization. The growth of fungal hyphae associated with grain and malt was imaged by scanning electron microscope and confocal laser scanning microscope assisted with WGA-Alexa Fluor 488 staining, respectively. In barley, hyphae were present on or within the husk, vascular bundle, and pericarp cavities. Following malting, vast hyphal growth was observed not only in these regions, but also in the aleurone layer, endosperm, and embryo. Extensive fungal growth was also observed following malting of wheat, rye, and triticale. However, these grains already had an extensive internal presence of Fusarium hyphae in the unmalted grain, thus representing an enhanced chance of fungal expansion during the malting.


Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 73
Author(s):  
Li Cao ◽  
Yunjing Jiang ◽  
Lei Zhu ◽  
Wei Xu ◽  
Xiaoyan Chu ◽  
...  

Deoxynivalenol (DON) is a common trichothecene mycotoxin found worldwide. DON has broad toxicity towards animals and humans. However, the mechanism of DON-induced neurotoxicity in vitro has not been fully understood. This study investigated the hypothesis that DON toxicity in neurons occurs via the mitochondrial apoptotic pathway. Using piglet hippocampal nerve cells (PHNCs), we evaluated the effects of different concentrations of DON on typical indicators of apoptosis. The obtained results demonstrated that DON treatment inhibited PHNC proliferation and led to morphological, biochemical, and transcriptional changes consistent with apoptosis, including decreased mitochondrial membrane potential, mitochondrial release of cytochrome C (CYCS) and apoptosis inducing factor (AIF), and increased abundance of active cleaved-caspase-9 and cleaved-caspase-3. Increasing concentrations of DON led to decreased B-cell lymphoma-2 (Bcl-2) expression and increased expression of BCL2-associated X (Bax) and B-cell lymphoma-2 homology 3 interacting domain death agonist (Bid), which in turn increased transcriptional activity of the transcription factors AIF and P53 (a tumor suppressor gene, promotes apoptosis). The addition of a caspase-8 inhibitor abrogated these effects. These results reveal that DON induces apoptosis in PHNCs via the mitochondrial apoptosis pathway, and caspase-8 is shown to play an important role during apoptosis regulation.


Toxins ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 794
Author(s):  
Chenxi Luo ◽  
Chenglong Huang ◽  
Lijuan Zhu ◽  
Li Kong ◽  
Zhihang Yuan ◽  
...  

T-2 toxin, a trichothecene mycotoxin produced by Fusarium, is widely distributed in crops and animal feed and frequently induces intestinal damage. Betulinic acid (BA), a plant-derived pentacyclic lupane-type triterpene, possesses potential immunomodulatory, antioxidant and anti-inflammatory biological properties. The current study aimed to explore the protective effect and molecular mechanisms of BA on intestinal mucosal impairment provoked by acute exposure to T-2 toxin. Mice were intragastrically administered BA (0.25, 0.5, or 1 mg/kg) daily for 2 weeks and then injected intraperitoneally with T-2 toxin (4 mg/kg) once to induce an intestinal impairment. BA pretreatment inhibited the loss of antioxidant capacity in the intestine of T-2 toxin-treated mice by elevating the levels of CAT, GSH-PX and GSH and reducing the accumulation of MDA. In addition, BA pretreatment alleviated the T-2 toxin-triggered intestinal immune barrier dysregulation by increasing the SIgA level in the intestine at dosages of 0.5 and 1 mg/kg, increasing IgG and IgM levels in serum at dosages of 0.5 and 1 mg/kg and restoring the intestinal C3 and C4 levels at a dosage of 1 mg/kg. BA administration at a dosage of 1 mg/kg also improved the intestinal chemical barrier by decreasing the serum level of DAO. Moreover, BA pretreatment improved the intestinal physical barrier via boosting the expression of ZO-1 and Occludin mRNAs and restoring the morphology of intestinal villi that was altered by T-2 toxin. Furthermore, treatment with 1 mg/kg BA downregulated the expression of p-NF-κB and p-IκB-α proteins in the intestine, while all doses of BA suppressed the pro-inflammatory cytokines expression of IL-1β, IL-6 and TNF-α mRNAs and increased the anti-inflammatory cytokine expression of IL-10 mRNA in the intestine of T-2 toxin-exposed mice. BA was proposed to exert a protective effect on intestinal mucosal disruption in T-2 toxin-stimulated mice by enhancing the intestinal antioxidant capacity, inhibiting the secretion of inflammatory cytokines and repairing intestinal mucosal barrier functions, which may be associated with BA-mediated inhibition of the NF-κB signaling pathway activation.


Author(s):  
Borbála Szabó ◽  
Benjamin Bálint ◽  
Miklós Mézes ◽  
Krisztián Balogh

There is limited data available concerning the effect of T-2/HT-2 toxin or deoxynivalenol (DON) on invertebrates such as springtails, and no data on their life history and oxidative stress. Control maize and DON or T-2 toxin contaminated maize were fed to Folsomia candida with a toxin content of 16324 mg DON kg–1 or 671 mg T-2 kg–1 maize. Ten to twelve days old animals were investigated in a life-history test and a stress protein test.T-2 toxin did not affect Folsomia candida in any measured parameters. The DON exposed group showed decreased growth and reproduction, and a higher survival rate. DON treatment resulted in lower protein content, while reduced glutathione content was higher than in control. It suggests that DON activated the glutathione-related detoxification pathway, which possibly causes a higher survival rate. The results also suggest that the oral toxicity of DON or T-2 is lower than through physical contact.For that reason, DON and T-2 toxin contaminated maize is not suggested to be used as green manure in the native state. Alternative solutions could be using mycotoxin contaminated maize for biogas production, or after decontamination by bacterial strains, it can be used as organic fertilizer.


Sign in / Sign up

Export Citation Format

Share Document