scholarly journals Serological Detection of Grapevine Virus A Using Antiserum to a Nonstructural Protein, the Putative Movement Protein

1997 ◽  
Vol 87 (10) ◽  
pp. 1041-1045 ◽  
Author(s):  
E. Rubinson ◽  
N. Galiakparov ◽  
S. Radian ◽  
I. Sela ◽  
E. Tanne ◽  
...  

Grapevine virus A (GVA) is implicated in the etiology of the rugose wood disease. The coat protein (CP) and the putative movement protein (MP) genes of GVA were cloned and expressed in Escherichia coli and used to produce antisera. Both the CP and the MP were detected with their corresponding antisera in GVA-infected Nicotiana benthamiana. The MP was first detected at an early stage of the infection, 6 to 12 h after inoculation, and the CP was detected 2 to 3 days after inoculation. The CP and MP were detected by immunoblot analysis in rugose wood-affected grapevines. The MP could be detected in GVA-infected grapevines that tested negative for CP, both with CP antiserum and with a commercially available enzyme-linked immunosorbent assay kit. The study shows that detection of the nonstructural MP may be an effective means for serological detection of GVA infection in grapevines.

2009 ◽  
Vol 44 (No. 4) ◽  
pp. 121-126
Author(s):  
P. Komínek ◽  
M. Komínková

An isolate of <i>Grapevine virus A</i> (GVA) from the Czech Republic was obtained from the grapevine cultivar Müller Thurgau. Symptoms of GVA – Kober stem grooving disease were not observed in the infected grapevines (which had been grafted onto Kober 5BB rootstock). A partial genomic sequence of the GVA isolate, 1523 nucleotides long, was obtained. The sequence completely covers the genes for both a movement and a coat protein. Compared to the GVA sequences available in databases, the nucleotide identity reached 84%. The amino acid identity in the movement protein reached 88%, and 98% in the coat protein.


Plant Disease ◽  
2003 ◽  
Vol 87 (5) ◽  
pp. 510-514 ◽  
Author(s):  
Natasa Petrovic ◽  
Baozhong Meng ◽  
Maja Ravnikar ◽  
Irena Mavric ◽  
Dennis Gonsalves

Rupestris stem pitting associated virus (RSPaV), a member of the genus Foveavirus, is associated with the Rupestris stem pitting component of the Rugose wood (RW) disease complex of grapevines. Heretofore, particles of RSPaV have not been visualized. In this work, flexuous rod particles approximately 723 nm in length were detected in the sap of infected grapevines by immunosorbent electron microscopy (ISEM), using a polyclonal antiserum produced to a recombinant coat protein of RSPaV. Particles of RSPaV were detected in tissue culture-, greenhouse-, and field-grown grapevines infected with RSPaV, but not in healthy control plants. Detection of virus particles by ISEM corresponded with detection of RSPaV by Western blot, enzyme-linked immunosorbent assay, and reverse transcription-polymerase chain reaction. Virus particles were decorated with the antibodies specific to RSPaV but not with antibodies to Grapevine virus A or Grapevine virus B, two other viruses believed to be associated with RW. This definitive identification of RSPaV particles will help define the etiology of RW.


2000 ◽  
Author(s):  
Ron Gafny ◽  
A.L.N. Rao ◽  
Edna Tanne

Rugose wood is a complex disease of grapevines, characterized by modification of the woody cylinder of affected vines. The control of rugose wood is based on the production of healthy propagation material. Detection of rugose wood in grapevines is difficult and expensive: budwood from tested plants is grafted onto sensitive Vitis indicators and the appearance of symptoms is monitored for 3 years. The etiology of rugose wood is complex and has not yet been elucidated. Several elongated clostero-like viruses are consistently found in affected vines; one of them, grapevine virus A (GVA), is closely associated with Kober stem grooving, a component of the rugose wood complex. GVA has a single-stranded RNA genome of 7349 nucleotides, excluding a polyA tail at the 3' terminus. The GVA genome includes five open reading frames (ORFs 1-5). ORF 4, which encodes for the coat protein of GVA, is the only ORF for which the function was determined experimentally. The original objectives of this research were: 1- To produce antisera to the structural and non-structural proteins of GVA and GVB and to use these antibodies to establish an effective detection method. 2- Develop full length infectious cDNA clones of GVA and GVB. 3- Study the roll of GVA and GVB in the etiology of the grapevine rugose wood disease. 4- Determine the function of Trichovirus (now called Vitivirus) encoded genes in the virus life cycle. Each of the ORFs 2, 3, 4 and 5 genes of GVA were cloned and expressed in E. coli and used to produce antisera. Both the CP (ORF 4) and the putative MP (ORF 3) were detected with their corresponding antisera in-GVA infected N. benthamiana and grapevine. The MP was first detected at an early stage of the infection, 6-12 h after inoculation, and the CP 2-3 days after inoculation. The MP could be detected in GVA-infected grapevines that tested negative for CP, both with CP antiserum and with a commercially available ELISA kit. Antisera to ORF 2 and 5 encoded proteins could react with the recombinant proteins but failed to detect both proteins in GVA infected plants. A full-length cDNA clone of grapevine virus A (GVA) was constructed downstream from the bacteriophage T7 RNA polymerase promoter. Capped in vitro transcribed RNA was infectious in N. benthamiana and N. clevelandii plants. Symptoms induced by the RNA transcripts or by the parental virus were indistinguishable. The infectivity of the in vitro-transcribed RNA was confirmed by serological detection of the virus coat and movement proteins and by observation of virions by electron microscopy. The full-length clone was modified to include a gus reporter gene and gus activity was detected in inoculated and systemic leaves of infected plants. Studies of GVA mutants suggests that the coat protein (ORF 4) is essential for cell to cell movement, the putative movement protein (ORF 3) indeed functions as a movement protein and that ORF 2 is not required for virus replication, cell to cell or systemic movement. Attempts to infect grapevines by in-vitro transcripts, by inoculation of cDNA construct in which the virus is derived by the CaMV 35S promoter or by approach grafting with infected N. benthamiana, have so far failed. Studies of the subcellular distribution of GFP fusion with each of ORF 2, 3 and 4 encoded protein showed that the CP fusion protein accumulated as a soluble cytoplasmatic protein. The ORF 2 fusion protein accumulated in cytoplasmatic aggregates. The MP-GFP fusion protein accumulated in a large number of small aggregates in the cytoplasm and could not move from cell to cell. However, in conditions that allowed movement of the fusion protein from cell to cell (expression by a PVX vector or in young immature leaves) the protein did not form cytoplasmatic aggregates but accumulated in the plasmodesmata.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 17
Author(s):  
Katarina Hančević ◽  
Pasquale Saldarelli ◽  
Mate Čarija ◽  
Silvija Černi ◽  
Goran Zdunić ◽  
...  

Sixteen grapevine cultivars from Mediterranean Croatia were surveyed for the presence of 10 of the most economically important grapevine viruses. The presence of Grapevine fanleaf virus (GFLV), Arabis mosaic virus (ArMV), Grapevine leafroll associated virus-1, -2, and -3 (GLRaV-1; GLRaV-2 and GLRaV-3), Grapevine virus A (GVA) and B (GVB), Grapevine fleck virus (GFkV), Grapevine rupestris stem pitting associated virus (GRSPaV), and Grapevine Pinot gris virus (GPGV) were tested by reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). All 71 analyzed clones were positive for the presence of one or more viruses. The most abundant one, detected in almost 95% of samples was GLRaV-3. In most of cases it was reported in mixed infections with GVA, GRSPaV, and GPGV. Virus genomes of GLRaV-3 infected vines were further characterized molecularly in order to determine their genetic diversity. Different genomic variants of heat shock 70 protein homologue (HSP70h) were identified by single-strand conformation polymorphism (SSCP) and sequenced. Sequence analysis confirmed their clustering into phylogenetic group I and/or phylogenetic group II. This study emphasizes the wide virus heterogenicity in Mediterranean vines and the predominant presence of GLRaV-3 phylogenetic groups I and II, either individually or in combination.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 353
Author(s):  
Ha Eun Jeon ◽  
Hyun Mi Kang ◽  
Eun Ae Yang ◽  
Hye Young Han ◽  
Seung Beom Han ◽  
...  

The aim of the present study is to re-evaluate the clinical application of two-times serologic immunoglobulin M (IgM) tests using microparticle agglutination assay (MAA), an enzyme-linked immunosorbent assay (ELISA), and polymerase chain reaction (PCR) assay in diagnosing Mycoplasma pneumoniae (MP) infection. A retrospective analysis of 62 children with MP pneumonia during a recent epidemic (2019–2020) was conducted. The MAA and ELISA immunoglobulin M (IgM) and IgG measurements were conducted twice at admission and around discharge, and MP PCR once at presentation. Diagnostic rates in each test were calculated at presentation and at discharge. The seroconverters were 39% (24/62) of patients tested by MAA and 29% (18/62) by ELISA. At presentation, the diagnostic positive rates of MAA, ELISA, and PCR tests were 61%, 71%, and 52%, respectively. After the second examination, the rates were 100% in both serologic tests. There were positive correlations between the titers of MAA and the IgM values of ELISA. The single serologic IgM or PCR tests had limitations to select patients infected with MP in the early stage. The short-term, paired IgM serologic tests during hospitalization can reduce patient-selection bias in MP infection studies.


2007 ◽  
Vol 14 (11) ◽  
pp. 1472-1482 ◽  
Author(s):  
Julie Perkins ◽  
Satya Parida ◽  
Alfonso Clavijo

ABSTRACT Liquid array technology has previously been used to show proof of principle of a multiplexed nonstructural protein serological assay to differentiate foot-and-mouth disease virus-infected and vaccinated animals. The current multiplexed assay consists of synthetically produced peptide signatures 3A, 3B, and 3D and the recombinant protein signature 3ABC in combination with four controls. To determine the diagnostic specificity of each signature in the multiplex, the assay was evaluated against a naive population (n = 104) and a vaccinated population (n = 94). Subsequently, the multiplexed assay was assessed by using a panel of bovine sera generated by the World Reference Laboratory for foot-and-mouth disease in Pirbright, United Kingdom. This serum panel has been used to assess the performance of other singleplex enzyme-linked immunosorbent assay (ELISA)-based nonstructural protein antibody assays. The 3ABC signature in the multiplexed assay showed performance comparable to that of a commercially available nonstructural protein 3ABC ELISA (Cedi test), and additional information pertaining to the relative diagnostic sensitivity of each signature in the multiplex was acquired in one experiment. The encouraging results of the evaluation of the multiplexed assay against a panel of diagnostically relevant samples promote further assay development and optimization to generate an assay for routine use in foot-and-mouth disease serological surveillance.


Plant Disease ◽  
2021 ◽  
Author(s):  
Chrysoula Orfanidou ◽  
Kalliopi Moraki ◽  
Polina Panailidou ◽  
Leonidas Lotos ◽  
Asimina T Katsiani ◽  
...  

Rugose wood is one of the most important disease syndromes of grapevine and it has been associated with at least three viruses: grapevine rupestris stem pitting associated virus (GRSPaV), grapevine virus A (GVA) and grapevine virus B (GVB). All three viruses show a worldwide distribution pattern, and their genetic composition has been the focus of extensive research over the past years. Despite their first record in Greece almost 20 years ago, there is a lack of knowledge on the distribution and genetic variability of their populations in Greek vineyards. In this context, we investigated the distribution of GRSPaV, GVA and GVB in rootstocks, self-rooted and grafted grapevine cultivars, originating from different geographic regions that are representing important viticultural areas of Greece. Three new RT-PCR assays were developed for the reliable detection of GRSPaV, GVA and GVB. Our results indicated that GVA is the most prevalent in Greek vineyards, followed by GRSPaV and GVB. However, virus incidence differed among self-rooted and grafted grapevine cultivars or rootstocks tested. Selected isolates from each virus were further molecularly characterized to determine their phylogenetic relationships. All three viruses exhibited high nucleotide diversity, which was depicted in the constructed phylogenetic trees. Isolates from Greece were placed in various phylogroups, reinforcing the scenario of multiple introductions of GVA, GVB and GRSPaV in Greece and highlighting the effect of different transmission modes in the evolutionary course of the three viruses.


2018 ◽  
Vol 93 (5) ◽  
Author(s):  
Oluwapelumi O. Adeyemi ◽  
Lee Sherry ◽  
Joseph C. Ward ◽  
Danielle M. Pierce ◽  
Morgan R. Herod ◽  
...  

ABSTRACTVirus capsid proteins must perform a number of roles. These include self-assembly and maintaining stability under challenging environmental conditions, while retaining the conformational flexibility necessary to uncoat and deliver the viral genome into a host cell. Fulfilling these roles could place conflicting constraints on the innate abilities encoded within the protein sequences. In a previous study, we identified a number of mutations within the capsid-coding sequence of poliovirus (PV) that were established in the population during selection for greater thermostability by sequential treatment at progressively higher temperatures. Two mutations in the VP1 protein acquired at an early stage were maintained throughout this selection procedure. One of these mutations prevented virion assembly when introduced into a wild-type (wt) infectious clone. Here we show, by sequencing beyond the capsid-coding region of the heat-selected virions, that two mutations had arisen within the coding region of the 2A protease. Both mutations were maintained throughout the selection process. Introduction of these mutations into a wt infectious clone by site-directed mutagenesis considerably reduced replication. However, they permitted a low level of assembly of infectious virions containing the otherwise lethal mutation in VP1. The 2Apromutations were further shown to slow the kinetics of viral polyprotein processing, and we suggest that this delay improves the correct folding of the mutant capsid precursor protein to permit virion assembly.IMPORTANCERNA viruses, including poliovirus, evolve rapidly due to the error-prone nature of the polymerase enzymes involved in genome replication. Fixation of advantageous mutations may require the acquisition of complementary mutations which can act in concert to achieve a favorable phenotype. This study highlights a compensatory role of a nonstructural regulatory protein, 2Apro, for an otherwise lethal mutation of the structural VP1 protein to facilitate increased thermal resistance. Studying how viruses respond to selection pressures is important for understanding mechanisms which underpin emergence of resistance and could be applied to the future development of antiviral agents and vaccines.


Sign in / Sign up

Export Citation Format

Share Document