scholarly journals Comparison of Lettuce Diseases and Yield Under Subsurface Drip and Furrow Irrigation

1997 ◽  
Vol 87 (8) ◽  
pp. 877-883 ◽  
Author(s):  
K. V. Subbarao ◽  
J. C. Hubbard ◽  
K. F. Schulbach

Subsurface drip and furrow irrigation were compared on lettuce (Lactuca sativa) cvs. Salinas and Misty Day for yield and incidence and severity of three important diseases of lettuce in the Salinas Valley, CA. Experiments were conducted between 1993 and 1995 during the spring and fall seasons. The diseases examined included lettuce drop (Sclerotinia minor), downy mildew (Bremia lactucae), and corky root (Rhizomonas suberifaciens). Replicated plots of subsurface drip and furrow irrigation were arranged in a randomized complete-block design. All plants were inoculated with S. minor at the initiation of the experiment during the 1993 spring season. Plots were not inoculated for downy mildew and corky root during any season nor were the plots reinoculated with S. minor. During each season, all plots were sprinkler irrigated until thinning, and subsequently, the irrigation treatments were begun. The furrow plots were irrigated once per week, and the drip plots received water twice per week. The distribution of soil moisture at two soil depths (0 to 5 and 6 to 15 cm) at 5, 10, and 15 cm distance on either side of the bed center in two diagonal directions was significantly lower in drip-irrigated compared with furrow-irrigated plots. Plots were evaluated for lettuce drop incidence and downy mildew incidence and severity at weekly intervals until harvest. Corky root severity and yield components were determined at maturity. Lettuce drop incidence and corky root severity were significantly lower and yields were higher in plots under subsurface drip irrigation compared with furrow irrigation, regardless of the cultivar, except during the 1994 fall season. Incidence and severity of downy mildew were not significantly different between the two irrigation methods throughout the study. The differential microclimates created by the two irrigation treatments did not affect downy mildew infection, presumably because the mesoclimate is usually favorable in the Salinas Valley. Subsurface drip irrigation is a viable, long-term strategy for soilborne disease management in lettuce in the Salinas Valley.

2003 ◽  
Vol 93 (12) ◽  
pp. 1572-1580 ◽  
Author(s):  
B. M. Wu ◽  
K. V. Subbarao

The temporal and spatial dynamics of Sclerotinia minor sclerotia and the resulting incidence of lettuce drop were studied under furrow irrigation with conventional tillage and subsurface-drip irrigation with minimum tillage during 1993–95. Lettuce crops were grown each year during the spring and fall seasons. All plants were inoculated immediately after thinning in the spring of 1993. Grids of 24 contiguous quadrats (1 by 1 m2) were demarcated in the centers of each 150-m2 plot. Lettuce drop incidence in each quadrat was evaluated each season prior to harvest. One soil sample (100 cm3) was collected from each quadrat at harvest and after tillage prior to planting of the next crop for both spring and fall crops and assayed for S. minor sclerotia using wet sieving. Lloyd's index of patchiness, the β-binomial distribution, and variance of moving window averages were used to evaluate the spatial patterns of sclerotia and lettuce drop incidence under the two irrigation systems and associated tillage treatments. Disease incidence remained significantly higher under furrow irrigation than under subsurface-drip irrigation throughout the study period, and was significantly higher on fall crops than on spring crops. Under furrow irrigation, the number of sclerotia at the end of a crop season increased significantly over that at the beginning of the season, but no significant changes were detected over years. In contrast, the number of sclerotia within a single season did not increase significantly under subsurface drip irrigation, nor was year-to-year accumulation of sclerotia statistically significant. The degree of aggregation of sclerotia increased significantly during a cropping season under furrow irrigation, but not under subsurface drip irrigation. The conventional tillage after harvest under furrow irrigation decreased the degree of aggregation of sclerotia after each season, but the distribution pattern of sclerotia under subsurface-drip irrigation changed little by the associated minimum tillage. Spatial pattern analyses suggested that the aggregation of S. minor sclerotia occurred at a scale of no more than 1 m, and distribution of diseased lettuce plants was random at a scale larger than 1 m. The combination of fewer sclerotia produced by each crop and its unaltered distribution under subsurface drip irrigation and associated minimum tillage makes it a valuable cultural practice for lettuce drop management.


1998 ◽  
Vol 88 (3) ◽  
pp. 252-259 ◽  
Author(s):  
A. A. Bell ◽  
L. Liu ◽  
B. Reidy ◽  
R. M. Davis ◽  
K. V. Subbarao

Subsurface drip irrigation and associated mandatory minimum tillage practices significantly reduced the incidence of lettuce drop (Sclerotinia minor) and the severity of corky root on lettuce compared with furrow irrigation and conventional tillage. Three possible mechanisms for the drip irrigation-mediated disease suppression were examined in this study: qualitative and quantitative differences in the soil microflora under furrow and subsurface drip irrigation; their antagonism and potential bio-control effects on S. minor; and the physical distribution of soil moisture and temperature relative to the two irrigation methods. To determine if the suppressive effects under subsurface drip irrigation were related to changes in soil microflora, soils were assayed for actinomycetes, bacteria, and fungi during the spring and fall seasons. The effects of the irrigation methods on microbial populations were nearly identical during both seasons. In the spring season, the total number of fungal colonies recovered on potato dextrose agar amended with rose Bengal generally was greater in soils under drip irrigation than under furrow irrigation, but no such differences were observed during the fall. Numbers of actinomycetes and bacteria were not significantly different between irrigation methods during either season. No interaction between sampling time and irrigation methods was observed for any of the microbial populations during both seasons. Thus, the significant effect of sampling time observed for actinomycete and bacterial populations during the spring was most likely not caused by the irrigation treatments. There were also no qualitative differences in the three groups of soil microflora between the irrigation treatments. Even though some fungal, actinomycete, and bacterial isolates suppressed mycelial growth of S. minor in in vitro assays, the isolates came from both subsurface drip- and furrow-irrigated soils. In in planta assays, selected isolates failed to reduce the incidence of drop in lettuce plants. The soil moisture under subsurface drip irrigation was significantly lower at all depths and distances from the bed center after an irrigation event than under furrow irrigation. The soil temperature, in contrast, was significantly higher at both 5 and 15 cm depths under drip irrigation than under furrow irrigation. The suppression of lettuce drop under subsurface drip irrigation compared with furrow irrigation is attributed to differential moisture and temperature effects rather than to changes in the soil microflora or their inhibitory effects on S. minor.


2006 ◽  
Vol 20 (4) ◽  
pp. 831-838 ◽  
Author(s):  
Kipp F. Sutton ◽  
W. Thomas Lanini ◽  
Jefferey P. Mitchell ◽  
Eugene M. Miyao ◽  
Anil Shrestha

A field experiment was conducted near Davis, CA, during the 2003 and 2004 summer growing seasons to compare weed control, yield, and fruit quality in different irrigation and tillage systems in processing tomato. Trial design was a subplots with the main plots as subsurface drip irrigation or furrow irrigation, subplots were standard tillage or conservation tillage, and sub-subplots were herbicide or no herbicide. The hypothesis was that subsurface drip irrigation could limit surface soil wetting and thus inhibit germination and growth of weeds equal to or better than standard tillage and/or herbicides. In both 2003 and 2004, weed densities in the subsurface drip irrigation treatments were over 98% lower than the levels in furrow irrigation treatments. In addition, weed densities were lower in the subsurface drip–conservation till–no herbicide treatment than in any of the furrow irrigation treatments, including the furrow irrigation–standard tillage–herbicide treatments. The time required for a hand-hoeing crew to remove weeds was 5 to 13 times greater in furrow irrigation treatments compared to subsurface drip irrigation treatments. Weed biomass on beds at tomato harvest was 10 to 14 times greater in the furrow systems as compared to the subsurface drip irrigation systems. These results demonstrate the effectiveness of subsurface drip irrigation in controlling weed germination and growth, compared to tillage or herbicide applications. Tomato yield was higher in the subsurface drip irrigation treatment compared to furrow irrigation in 2004. Herbicide treatment increased yield in 2004, but only in the furrow irrigation treatment in 2003. Fruit brix level was not related to treatment in 2003, but was lower in the subsurface drip irrigation plots in 2004. These results indicate that subsurface drip irrigation can reduce weed competition in conservation tillage systems, without requiring herbicide applications.


2016 ◽  
Vol 26 (4) ◽  
pp. 436-443 ◽  
Author(s):  
Timothy Coolong

Subsurface drip irrigation (SDI) has been increasingly used for the production of numerous agronomic crops and a limited number of vegetable crops. To determine the impact of SDI compared with surface drip irrigation (SUR), a study was conducted in 2011 and 2012 with ‘Table Queen’ acorn squash (Cucurbita pepo var. turbinata) with irrigation initiated at 75% and 50% plant available water (PAW). The study was arranged as a factorial randomized complete block design and plants were grown with two irrigation types (SUR or SDI) and two tensiometer-controlled irrigation regimes. Results from 2011 suggested that SDI used less water compared with SUR at each irrigation set point. However, in 2012, significantly more water was used in all treatments due to warmer temperatures and less rainfall. In 2012, SDI used more water than SUR treatments at the same irrigation set point. In 2012, yield was affected by irrigation treatment. Plants grown using SUR irrigating at 75% PAW had greater numbers of fruit compared with other treatments. Furthermore, the highest yielding treatment had more than twice the number of irrigation events than the other treatments though the average lengths of irrigation events were shorter. Although overall yields were greater in 2012, irrigation water use efficiency (iWUE) was lower than in 2011 due to increased water use. These results suggest that while SDI may have some advantages over traditional SUR, environmental factors during growth can significantly impact the efficiency and productivity of each system.


2004 ◽  
Vol 50 (2) ◽  
pp. 61-68 ◽  
Author(s):  
C. Choi ◽  
I. Song ◽  
S. Stine ◽  
J. Pimentel ◽  
C. Gerba

Two different irrigation systems, subsurface drip irrigation and furrow irrigation, are tested to investigate the level of viral contamination and survival when tertiary effluent is used in arid and semi-arid regions. The effluent was injected with bacteriophages of PRD1 and MS2. A greater number of PRD1 and MS2 were recovered from the lettuce in the subsurface drip-irrigated plots as compared to those in the furrow-irrigated plots. Shallow drip tape installation and preferential water paths through cracks on the soil surface appeared to be the main causes of high viral contamination in subsurface drip irrigation plots, which led to the direct contact of the lettuce stems with the irrigation water which penetrated the soil surface. The water use efficiency of the subsurface drip irrigation system was higher than that of the furrow irrigation system. Thus, subsurface drip irrigation is an efficient irrigation method for vegetable crops in arid and semi-arid regions if viral contamination can be reduced. Deeper installation of drip tapes, frequent irrigations, and timely harvests based on cumulative heat units may further reduce health risks by ensuring viral die-off under various field conditions.


2014 ◽  
Vol 41 (2) ◽  
pp. 111-119 ◽  
Author(s):  
R. B. Sorensen ◽  
C. L. Butts

ABSTRACT Long term crop yield with various crop rotations irrigated with subsurface drip irrigation (SSDI) is not known for US southeast. A SSDI system was installed in 1998 on Tifton loamy sand soil with five crop rotations, two drip tube lateral spacings, and three irrigation levels. Crop rotations ranged from continuous peanut (Arachis hypogaea L) to four years between peanut. Laterals were installed beneath each crop row (0.91-m) and alternate row middles (1.83-m). Crops were irrigated daily at 100, 75 and 50% of estimated crop water use. Laterals spaced at 1.83 m had the same yield as laterals spaced at 0.91-m in nine out of ten years. The 50, 75, and 100% irrigation treatments averaged 3263, 3468, and 3497 kg/ha, respectively. There was no yield difference between the 75 and 100% irrigation treatments implying 25% water savings. Crop rotation affected peanut yield seven out of eight years and continuous peanut had lowest yield across all years. As time between peanut crops increased peanut yield increased. Irrigation treatment had no effect on total sound mature kernels (TSMK). Lateral spacing affected TSMK 20% of the time and crop rotation affected TSMK 90% of the time. Continuous peanut rotation had the lowest TSMK with higher TSMK occurring as time between peanut crops increased. There was no evidence of any one crop rotation negatively affecting kernel size distribution except for continuous peanut. When using SSDI, it is possible to save 25% irrigation water, install drip laterals in alternate row middles, and rotate with peanut every three years without negatively affecting peanut yield or grade.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Juan Enciso ◽  
John Jifon ◽  
Juan Anciso ◽  
Luis Ribera

Selection of the proper irrigation method will be advantageous to manage limited water supplies and increase crop profitability. The overall objective of this study was to evaluate the effect of subsurface drip irrigation (SDI) and furrow irrigation on onion yield and irrigation use efficiency. This study was conducted in two locations, a commercial field and a field located at the Texas A&M AgriLife Research Center in Weslaco, TX. This study was conducted as a split-plot design for both sites with two treatments (SDI and furrow irrigation) and three replications per treatment. The total onion yield obtained with the SDI systems was more than 93% higher than the yield obtained with furrow irrigation systems. The large onion size was 181% higher for the SDI system than the furrow system in both sites. The colossal size yield was also higher. At one site colossal yield was 206% higher than furrow, while at another site furrow yielded no colossal onions and SDI had some production. It was concluded that drip irrigation systems more than double yields and increased onion size while using almost half of the water. This was due to SDI allowing for more frequent and smaller irrigation depths with higher irrigation efficiency than furrow irrigation systems.


2021 ◽  
Vol 35 (4) ◽  
pp. 516-530
Author(s):  
Anderson Ramos de Oliveira ◽  
Welson Lima Simões

MANEJO E PRODUÇÃO DE PALHADA DA CANA-DE-AÇÚCAR EM UM SISTEMA IRRIGADO POR GOTEJAMENTO SUBSUPERFICIAL PARA GERAÇÃO DE BIOETANOL   ANDERSON RAMOS DE OLIVEIRA1, WELSON LIMA SIMÕES1   1 Embrapa Semiárido, Rodovia BR-428, Km 152, s/n, Zona Rural, CEP 56302-970, Petrolina, PE, Brasil, e-mail: [email protected], [email protected]   RESUMO: Práticas agrícolas que contemplam a sustentabilidade do sistema de produção da cana-de-açúcar têm sido cada vez mais demandadas pela sociedade. A palhada disponibilizada na colheita da cana-de-açúcar, sem queima, pode ser utilizada para a cogeração de energia na forma de bioetanol. Assim, objetivou-se com este trabalho avaliar a produtividade de palhada de cana-de-açúcar e estimar o rendimento de bioetanol de segunda geração - E2G, em um sistema irrigado por gotejamento subsuperficial, sob diferentes percentuais de manutenção de palhada sobre a superfície do solo. O estudo foi desenvolvido na Usina Agrovale S.A., em Juazeiro, BA. Adotou-se o delineamento em blocos casualizados com cinco tratamentos, correspondentes aos percentuais de manutenção de palhada sobre o solo: 0, 25, 50, 75 e 100%, com quatro repetições, durante quatro ciclos de cultivo. Avaliou-se a produtividade de palhada remanescente após as colheitas e estimou-se o rendimento de bioetanol. A produtividade de palhada da cana-de-açúcar na colheita foi influenciada pela porcentagem de palhada remanescente mantida sobre o solo. A cultivar VAT90212 apresenta maior produtividade de palhada no ciclo de cana-planta. O rendimento de E2G proveniente da palhada aumenta o potencial de produtividade total de bioetanol de cana-de-açúcar por hectare.   Palavras-chave: E2G, sustentabilidade, bioenergia, Semiárido.   MANAGEMENT AND PRODUCTION OF SUGARCANE STRAW UNDER SUBSURFACE DRIP IRRIGATION FOR BIOETHANOL GENERATION   ABSTRACT: Sustainable agricultural practices in the sugarcane production system have been increasingly demanded by society. The amount of sugarcane straw available in the harvest, without burning, can be used as energy for second-generation bioethanol production. The objectives of this work were to evaluate the productivity of sugarcane straw and to estimate the yield of second-generation bioethanol, under subsurface drip irrigation, using straw at different percentages of soil surface coverage. The study was conducted at Agrovale S.A. in Juazeiro, BA, Brazil. A randomized block design with five treatments, corresponding to the levels of straw soil surface coverage was used: 0, 25, 50, 75, and 100%, with four replications, during four crop cycles. The yield of remaining straw on the soil after the harvest was evaluated and the yield of bioethanol was estimated. The yield of sugarcane straw at harvest was influenced by the percentage of remaining straw soil surface coverage. The cultivar VAT90212 shows higher straw productivity in the sugarcane plant cycle. The yield of the second generation bioethanol from the straw increases the total productivity potential of bioethanol from sugarcane per hectare.   Keywords: E2G, sustainability, bioenergy, Semi-arid.


2020 ◽  
Vol 51 (5) ◽  
pp. 1300-1307
Author(s):  
Al-Shamari & et al.

A field experiment was conducted in Ramadi district - Al-Anbar province during the autumn season of 2018. to study the role of compost (sheep residues) and irrigation levels in some physical properties of soil and water consumption a potato under surface and subsurface drip irrigation system. Randomized Complete Block Design (RCBD) in arrangement of a split- split-plot with  three replication were used.The results showed that the addition of 10 Mg.h-1  resulted in a significant decrease in bulk density (BD) values of 1.12 Mg m-3, and increase in the values of (MWD) and (Ks) to reach 1.47 mm and 10.3 cm. hr -1 respectively. The addition of 50% of the NID reduced the BD to 1.24 Mg m-3, The MWD and SHC were significantly higher to reach 1.24 mm and 8.1 cm hr-1 respectively. WHC increased with increasing of amount of irrigation water as it reached the highest value of 265.66 mm season-1 when adding 100% of the NID. The BD values decreased, whereas MWD and SWC increased under subsurface irrigation (SUBDI) treatment to be 1.23 Mg m-3, 1.24 mm and 8.4 cm hr-1, respectively.


Sign in / Sign up

Export Citation Format

Share Document