scholarly journals Commercial Fungicide Formulations Induce In Vitro Oospore Formation and Phenotypic Change in Mating Type in Phytophthora infestans

2000 ◽  
Vol 90 (11) ◽  
pp. 1201-1208 ◽  
Author(s):  
Carol Trout Groves ◽  
Jean Beagle Ristaino

A wide range of commercially formulated fungicides cause in vitro effects on mating behavior in specific isolates of Phytophthora infestans, the causal agent of late blight of potato and tomato. Four isolates of P. infestans representing each of the four common US genotypes, US-1, US-6, US-7, and US-8 and varying in their sensitivity to metalaxyl, were exposed to a variety of fungicides used to control late blight in petri dish assays at concentrations ranging from 1 to 100 μg a.i./ml. Exposure of each of these normally heterothallic single mating type isolates of P. infestans to 9 of the 11 commercial fungicide formulations tested resulted in the formation of oospores after 2 to 4 weeks. The highest numbers of oospores were formed on media amended with Ridomil 2E (metalaxyl) and Ridomil Gold EC (mefenoxam) at 0.1 to 10 μg a.i./ml, averaging as many as 471 and 450 oospores per petri dish, respectively. Several other fungicides including Maneb, Manzate (Mancozeb), Curzate (cymoxanil + mancozeb), and Acrobat MZ (dimethomorph + mancozeb) also induced oospore formation, producing from 0 to 200 oospores per plate at fungicide concentrations from 0.1 to 10 μg a.i./ml. The metalaxyl resistant isolates formed oospores in response to the fungicides more often than the metalaxyl sensitive isolates. No oospores were formed on media amended with Bravo (chlorothalonil) or Tattoo C (chlorothalonil + propamocarb HCl) and these compounds completely suppressed growth of the isolates at 0.1 and 1 μg a.i./ml. Three metalaxyl resistant A2 isolates mated with both A1 and A2 isolates after exposure to the fungicides Ridomil 2E and Ridomil Gold EC. Alterations in mating type expression were also observed in a metalaxyl sensitive A1 isolate after exposure to Benlate (benomyl). Copious amounts of chemicals are applied annually to potato and tomato production areas to control late blight. Our results indicate that a wide range of chemically diverse fungicides can induce normally heterothallic metalaxyl resistant isolates of P. infestans to form oospores in vitro after short exposures to the fungicides.

2000 ◽  
Vol 90 (10) ◽  
pp. 1105-1111 ◽  
Author(s):  
Yigal Cohen ◽  
Sonja Farkash ◽  
Alexander Baider ◽  
David S. Shaw

Two field experiments were conducted to study the effect of overhead sprinkling irrigation on oospore formation by the late blight fungus Phytophthora infestans in potato. Total rain (natural + sprinkling) accumulated in treatments of experiment 1 (winter 1997 to 1998) were 765, 287, and 219 mm and treatments of experiment 2 (winter 1999 to 2000) were 641, 193, and 129 mm. Sporangia from 11 isolates of P. infestans were combined in eight pairs, seven of A1 and A2 and one of A2 and A2 mating type, and were sprayed on field-grown potato crops (42 plants per plot at 7 m2 each) and examined for their ability to form oospores in the host tissues. In experiment 1, oospores were recorded in a total of 132 of 1,680 leaflets (7.9%), 24 of 105 stems, and 2 of 90 tubers. In experiment 2, oospores were recorded in 40 of 519 leaflets (7.7%), but not in any of the 90 stems or the 45 tubers examined. Both the proportion of leaflets containing oospores and the number of oospores per leaflet increased with time after inoculation and were dependent on the rain regime, the position of leaves on the plant, and the isolate pair combination. In both field trials, increasing the rainfall significantly enhanced oospore production in leaves. Leaf samples collected from the soil surface had significantly more oospores than those collected from the midcanopy. Two pairs in experiment 1 were more fertile than the others, whereas the pair used in experiment 2 was the least fertile. The total number of oospores per leaflet usually ranged from 10 to 100 in experiment 1, but only from 2 to 10 in experiment 2. Maximal oospore counts in the field were 200 and 50 in experiments 1 and 2, respectively, but ranged from ≈2,000 to 12,000 oospores per leaflet in detached leaves in the laboratory. We concluded that P. infestans can produce oospores in the foliage of field-grown potato crops, especially when kept wet by regular overhead sprinkling irrigation, but production was far below that in the laboratory.


Plant Disease ◽  
1999 ◽  
Vol 83 (9) ◽  
pp. 876-876 ◽  
Author(s):  
A. Strömberg ◽  
L. Persson ◽  
M. Wikström

Phytophthora infestans (Mont.) de Bary, causing late blight on potatoes and considered to be a typical airborne disease, was found to be infective also by oospores in the soil. P. infestans is heterothallic, and is known to reproduce asexually in Sweden since only one mating type, A1, was present until 1986. Since the 1970s, the other mating type, A2, of P. infestans has migrated to most parts of the world from its original location in central Mexico (2). When A1 and A2 meet, they may form oospores, which are thick-walled, resting structures, giving the pathogen a possibility to recombine as well as survive without its host, for instance in the soil. The soil stages of the pathogen are now therefore under intense investigation. Oospores of P. infestans were produced from two Scandinavian A1 and A2 isolates in Rye A broth mixed with talcum powder and dried for 7 weeks. The inoculum was mixed with sterile, standardized soil in concentrations of 10, 150, 250, and 400 oospores per ml of soil. Cv. Bintje plants cultivated in vitro from nodal cuttings on Murashige and Skoog medium were transplanted to the soil after rooting. Brown discolorations were obtained on the underground stems and tubers on potato plants grown in the two highest concentrations of oospores for 1 month at 15°C and 16-h day length. After 3 days of incubation on P. infestans-selective medium (3), sporangia covered the tissue from plants grown in 250 and 400 oospores per ml of soil and the pathogen was reisolated. This shows that germinating oospores of P. infestans can infect underground stems and tubers of potatoes in soil and further explains the early attack of late blight as observed in a potato crop in Sweden 1996 and 1997 (1). References: (1) B. Andersson et al. Potato Res. 41:305, 1998. (2) D. Andrivon. Phytopathology 85:1053, 1995. (3) G. W. Griffith et al. Mycologist 9:87, 1995.


Plant Disease ◽  
2003 ◽  
Vol 87 (12) ◽  
pp. 1538-1538 ◽  
Author(s):  
B. Andersson ◽  
M. Johansson ◽  
B. Jönsson

In the early summer of 2003, lesions resembling those caused by Phytophthora infestans (Mont.) de Bary on potato were observed on Solanum physalifolium Rusby var. nitidibaccatum (Bitter) Edmonds (2) that was growing as a weed in a parsnip (Pastinaca sativa) field in southern Sweden. When infected leaves of S. physalifolium were observed under the microscope (×200 magnification), sporangia with the same shape and size as those of P. infestans were observed. Pieces of infected leaves of S. physalifolium were put under tuber slices of S. tuberosum (cv. Bintje) in petri dishes and kept at 20°C. After 4 days, mycelium grew through the slices and sporulated profusely. The sporangia on the slices were of the same shape and size as those observed on the infected S. physalifolium leaves. In Sweden, the ratio of A1 and A2 mating types of P. infestans is 50:50, and oospores are commonly found in infected potato crops (1), so isolates from S. physalifolium were tested for mating type by growing them together with reference isolates of a known mating type on agar plates. Nine of the tested isolates were A1 mating type and six were A2 mating type. One self-fertile isolate was found. Naturally infected leaves of S. physalifolium were incubated at 20°C at 100% relative humidity so the lesions could coalesce and to facilitate oospore formation. After 5 days, oospores identical to those of P. infestans were observed under the microscope (×200 magnification). Sporangia produced by isolates originating from S. physalifolium and S. tuberosum were harvested, and a suspension containing 104 sporangia per ml from each isolate was prepared. Five leaves each of S. nigrum, S. physalifolium, and S. tuberosum (cv. Bintje), were inoculated with 10 μl of each sporangial suspension. Inoculated leaves were incubated in sealed petri dishes at 15°C. After 4 days, all S. tuberosum leaves were infected. After 7 days, two of five leaves of S. physalifolium inoculated with the S. tuberosum isolate and two of five S. physalifolium leaves inoculated with the isolate from S. physalifolium were infected. All lesions produced sporangia similar to those formed by P. infestans. S. nigrum was not infected by any of the isolates. The ability of S. physalifolium to act as a host plant for P. infestans producing sporangia during the growing season and oospores for survival between growing seasons may increase the problems of controlling late blight in potato in Sweden. References: (1) J. Dahlberg et al. Field survey of oospore formation by Phytophthora infestans. (Poster Abstr.) Pages 134–135 In: Late Blight: Managing the Global Threat. Proc Global Late Blight Conf. Charlotte Lizarraga, ed. Centro Internacional De La Papa, On-line publication, ISBN 929060-215-5, 2002. (2) J. M. Edmonds. Bot. J. Linn. Soc. 92:1, 1986.


Plant Disease ◽  
1998 ◽  
Vol 82 (9) ◽  
pp. 1064-1064 ◽  
Author(s):  
S. K. Shrestha ◽  
K. Shrestha ◽  
K. Kobayashi ◽  
N. Kondo ◽  
R. Nishimura ◽  
...  

Late blight caused by Phytophthora infestans (Mont.) de Bary is an important disease of potato and tomato that occurs annually in the hills and occasionally in the terai (plain) of Nepal. In 1996 and 1997, each year, 50 samples of late blight-infected potato and tomato leaves were collected from the hill and terai areas. The pathogen was cultured on Rye A agar. Each isolate was paired on clear V8 agar with reference isolates DN111 (A1 mating type) and DN107 (A2 mating type) received from Hokkaido University, Japan, and examined for oospore formation after 10 to 15 days of incubation at 20°C. The proportion of A2 isolates was 6% in 1996 and 42% in 1997. The A2 isolates were mainly from the high hills (2,000 to 2,500 m) where local and Andean types of potatoes are grown. Analysis of genotypes of isolates at the glucosephosphate isomerase (GPI-1), malic enzyme (ME), and peptidase (PEP-1) (1,2) isozyme loci revealed genetic diversity between A1 and A2 isolates. A1 isolates from potato were either homozygous (100/100) or heterozygous (86/100) for GPI-1, whereas all A1 isolates from tomato were heterozygous (86/100). All A1 isolates were homozygous (100/100) at the ME locus and heterozygous (92/100) at the PEP-1 locus. A2 isolates were homozygous (100/100) at all isozyme loci. The results show that both A1 and A2 mating types of P. infestans are present in Nepal, and that they display different isozyme genotypes. It is speculated that the A1 type may have migrated with potatoes from Europe while the A2 type may have been introduced with Andean potatoes from Latin America more recently. The simultaneous occurrence of both mating types may allow the fungus to increase its pathogenic diversity and to survive by means of oospores. References: (1) A. A. Mosa et al. Plant Pathol. 42:26, 1993. (2) P. W. Tooley et al. J. Hered. 76:431, 1985.


Plant Disease ◽  
2012 ◽  
Vol 96 (7) ◽  
pp. 935-942 ◽  
Author(s):  
Toky Rakotonindraina ◽  
Jean-Éric Chauvin ◽  
Roland Pellé ◽  
Robert Faivre ◽  
Catherine Chatot ◽  
...  

The Shtienberg model for predicting yield loss caused by Phytophthora infestans in potato was developed and parameterized in the 1990s in North America. The predictive quality of this model was evaluated in France for a wide range of epidemics under different soil and weather conditions and on cultivars different than those used to estimate its parameters. A field experiment was carried out in 2006, 2007, 2008, and 2009 in Brittany, western France to assess late blight severity and yield losses. The dynamics of late blight were monitored on eight cultivars with varying types and levels of resistance. The model correctly predicted relative yield losses (efficiency = 0.80, root mean square error of prediction = 13.25%, and bias = –0.36%) as a function of weather and the observed disease dynamics for a wide range of late blight epidemics. In addition to the evaluation of the predictive quality of the model, this article provides a dataset that describes the development of various late blight epidemics on potato as a function of weather conditions, fungicide regimes, and cultivar susceptibility. Following this evaluation, the Shtienberg model can be used with confidence in research and development programs to better manage potato late blight in France.


2017 ◽  
Vol 2 (1) ◽  
pp. 90-91
Author(s):  
Virupaksh U. Patil ◽  
G. Vanishree ◽  
Debasis Pattanayak ◽  
Sanjeev Sharma ◽  
Vinay Bhardwaj ◽  
...  

2010 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Hugo F. Rivera ◽  
Erika P. Martínez ◽  
Jairo A. Osorio ◽  
Edgar Martínez

<p>Phytophthora infestans (Mont.) de Bary, agente causal de la gota de la papa, es considerado la principal limitante de la producción de este cultivo en Colombia. El control habitual del patógeno se realiza con fungicidas de tipo sistémico, que incrementan los costos de producción, pueden inducir la resistencia del patógeno y tiene un impacto negativo en el ambiente. Por tanto, se llevó a cabo este estudio con el propósito de buscar alternativas amigables con el ambiente, que hagan parte de un paquete tecnológico eficaz de control. Dos cepas nativas de Psedomonas fluorescens (039T y 021V), provenientes de cultivos de papa, fueron evaluadas contra P. infestans. Las suspensiones bacterianas y los biosurfactantes parcialmente purificados (BPP), producidos por éstas (obtenidos en medio mínimo de sales con querosén), fueron aplicados sobre foliolos desprendidos en ensayos in vitro y experimentos in vivo en plantas de papa, en condiciones controladas en casa de malla. Los resultados demostraron la capacidad que tienen los biosurfactantes y las suspensiones bacterianas para controlar al patógeno, ya que el BPP 039T logró reducir el nivel de severidad de la enfermedad en 79,9% in vitro y 38,5% in vivo, mientras que el BPP 021V redujo en 78,7% in vitro y 30,2% in vivo. Las suspensiones bacterianas redujeron el nivel de severidad en 72,4% (039T) y 66,1% (021V) en las evaluaciones in vitro y 35% en los experimentos in vivo. Los resultados de esta investigación muestran el potencial que tienen los biosurfactantes para el control de la gota en Colombia.</p><p> </p><p><strong>Evaluation of Biosurfactants Produced by Pseudomonas fluorescens for Potato Late Blight Control (Phytophthora infestans (Mont) de Bary) Under Controlled Conditions</strong></p><p>Phytophthora infestans (Mont.) de Bary, causal agent of potato late blight is considered the main limiting pathogen for the production of this crop in Colombia. The usual control of the disease has been performed with systemic fungicides which increase production costs, can induce pathogen resistance and have a negative impact on the environment. Therefore, this study was carried out in order to find effective and environmentally friendly control alternatives for potato late blight. Two Pseudomonas fluorescens native strains (039T and 021V) isolated from potato crops were evaluated against P. infestans. Bacterial suspensions (obtained from minimal salts medium added with kerosene) and partially purified biosurfactants (BPP) were applied on detached leaflets for in vitro assays and on potato plants in greenhouse, for in vivo assays and the measure of inhibitory effect of the disease was assessed. The results showed the ability of P. fluorescens biosurfactants and bacterial suspensions to control the pathogen. BPP 039T was able to reduce the level of severity disease by 79.9% in vitro and 38.5% in vivo, whereas BPP 021V decreased 78.7% in vitro and 30.2% in vivo. Bacterial suspensions reduced the severity level in 72.4% (039T) and 66.1% (021V) in vitro assessments and 35% in the in vivo experiment. These results show the potential of P. fluorescens biosurfactants to control the potato late blight in Colombia.</p>


Plant Disease ◽  
2014 ◽  
Vol 98 (6) ◽  
pp. 761-765 ◽  
Author(s):  
Anna C. Seidl Johnson ◽  
Stephen A. Jordan ◽  
Amanda J. Gevens

Late blight, caused by the oomycete Phytophthora infestans, causes serious losses in tomato production worldwide. Application of fungicides is the primary means of management but cultivar resistance, primarily through Ph resistance genes from Solanum pimpinellifolium, can provide a cost-effective and environmentally sound approach to an overall disease management program. Due to highly adaptable pathogen populations, cultivar resistance against late blight is often short lived and continual assessment of disease response to new pathogen types is necessary. We evaluated the disease response of 11 tomato cultivars to one isolate from each of three clonal lineages (US-22, US-23, and US-24) of P. infestans novel to the United States to determine the efficacy of currently deployed Ph genes in hybrid cultivars and the validity of claims of resistance in heirloom cultivars. Lesion length and pathogen growth were reduced on tomato genotypes ‘Plum Regal’ (Ph-3) and ‘Legend’ (Ph-2) compared with the susceptible control ‘Brandywine Red’ following inoculation with one isolate (US-23) but were not significantly different from the control with an isolate of US-22. ‘Mountain Magic’ (Ph-2 and Ph-3) and three heirloom cultivars (‘Wapsipinicon Peach’, ‘Matt's Wild Cherry,’ and ‘Pruden's Purple’) had reduced lesion length and pathogen growth to all three isolates. Although the genetics of resistance are not fully understood for many of these, the heirloom cultivars may be useful for future tomato late blight breeding efforts. All of the cultivars investigated in this work are currently available and use of cultivars exhibiting reduced disease development may limit losses to late blight and reduce reliance on fungicides. Resistant cultivars also limit the production of inoculum, reducing overall late blight risk and spread in tomato and potato crops.


Plant Disease ◽  
1998 ◽  
Vol 82 (4) ◽  
pp. 434-436 ◽  
Author(s):  
K. D. Marshall-Farrar ◽  
M. McGrath ◽  
R. V. James ◽  
W. R. Stevenson

Late blight of potato (Solanum tuberosum), caused by Phytophthora infestans, recently reappeared in Wisconsin and was a significant production problem in 1994. P. infestans isolates collected in Wisconsin from 1993 to 1995 were characterized for the following traits: mating type, sensitivity to metalaxyl, and allozyme genotype for Glucose-6-phosphate isomerase (Gpi). Characterization of these isolates revealed that a new, more aggressive population (A2 mating type, metalaxyl resistant, and Gpi genotype 100/111/122) is displacing the old population (A1 mating type, metalaxyl sensitive, and Gpi genotype 86/100) in Wisconsin.


Sign in / Sign up

Export Citation Format

Share Document