scholarly journals Two Newly Described Begomoviruses of Macroptilium lathyroides and Common Bean

2003 ◽  
Vol 93 (7) ◽  
pp. 774-783 ◽  
Author(s):  
A. M. Idris ◽  
E. Hiebert ◽  
J. Bird ◽  
J. K. Brown

Macroptilium lathyroides, a perennial weed in the Caribbean region and Central America, is a host of Macroptilium yellow mosaic Florida virus (MaYMFV) and Macroptilium mosaic Puerto Rico virus (MaMPRV). The genomes of MaYMFV and MaMPRV were cloned from M. lathyroides and/or field-infected bean and the DNA sequences were determined. Cloned A and B components for both viruses were infectious when inoculated to M. lathyroides and common bean. Comparison of the DNA sequences for cloned A and B components with well-studied begomovirus indicated that MaMPRV (bean and M. lathyroides) and MaYMFV (M. lathyroides) are unique, previously undescribed begomo-viruses from the Western Hemisphere. Phylogenetic analysis of viral A components indicated that the closest relative of MaYMFV are members of the Bean golden yellow mosaic virus (BGYMV) group, at 76 to 78% nucleotide identity, whereas the closest relative for the A component of MaMPRV was Rhynchosia golden mosaic virus at 78% nucleotide identity. In contrast, BGYMV is the closest relative for the B component of both MaYMFV and MaMPRV, with which they share ≈68.0 and ≈72% identity, respectively. The incongruent taxonomic placement for the bipartite components for MaMPRV indicates that they did not evolve entirely along a common path. MaYMFV and MaMPRV caused distinctive symptoms in bean and M. lathyroides and were transmissible by the whitefly vector and by grafting; however, only MaYMFV was mechanically transmissible. The experimental host range for the two viruses was similar and included species within the families Fabaceae and Malvaceae, but only MaYMFV infected Malva parviflora and soybean. These results collectively indicate that MaMPRV and MaYMFV are new, previously undescribed species of the BGYMV group, a clade previously known to contain only strains and isolates of BGYMV from the Caribbean region that infect Phaseolus spp. Both MaYMFV and MaMPRV may pose an economic threat to bean production in the region.

2018 ◽  
Vol 16 (2) ◽  
pp. e1006
Author(s):  
Lidia Chang-Sidorchuk ◽  
Heidy González-Alvarez ◽  
Yamila Martínez-Zubiaur

Viral diseases caused by begomoviruses are economically important for their depressing impact on common bean production in Cuba. Mayabeque is a Cuban province where this crop is significantly grown and affectations by Bean golden yellow mosaic virus (BGYMV) have been detected in the last 30 years. Integrated pest management (IPM) programs in this crop have allowed controlling the disease for a long time. However, in prospections of the last years, an increase of the incidence of various yellowing symptoms typical of begomoviruses has been observed in common bean production areas. DNA was extracted from leaf samples taken from symptomatic plants. Non-radioactive nucleic acid hybridization and a specific PCR assay were used to detect BGYMV, Common bean severe mosaic virus, Common bean mottle virus, and Tobacco leaf curl Cuba virus. Of the 218 bean plants sampled, 89.5 % was positive to BGYMV; the presence of the rest of the begomovirus species was between 3 and 4% (3.08% of CBMoV, 3.08% of TbLCCuV and 4.32% of CBSMV). The viral DNA from some samples was analyzed by rolling circle amplification (RCA), by restriction fragment length polymorphism analysis using restriction enzymes, and by cloning and sequencing of the viral components. The DNA sequences from BGYMV isolates showed 98% of identity with the isolates reported in Cuba in 2003. The infection by Tobacco leaf curl Cuba virus (TbLCCuV) was confirmed also in fields in the Cuban western region. This is the first work where the DNA-B of TbLCCuV is identified. These studies will help to strengthen phytosanitary surveillance and management programs implemented in the country to control the whitefly-begomovirus complex in this economically important crop.


1969 ◽  
Vol 85 (3-4) ◽  
pp. 165-176
Author(s):  
Lydia I. Rivera-Vargas ◽  
Vilmaris Bracero-Acosta ◽  
James S. Beaver ◽  
Dan E. Purcifull ◽  
Jane E. Polston ◽  
...  

Bean golden yellow mosaic virus (BGYMV) is a geminivirus transmitted by whiteflies (Genus: Bemisia). This virus causes significant fosses in common bean (Phaseolus vulgaris L.). Serological techniques such as enzymelinked immunosorbent assay (ELISA) have been widely used for detection of viruses. We evaluated existing monoclonal antibodies (3F7,2G5 and 5C5) for the detection of BGYMV isolates in bean fines in Puerto Rico. Monoclonal antibody 3F7 was the most effective in detecting the virus in tissues of line DOR 364 and susceptible cuftivars Top Crop and Quest. However, it was not effective in the detection of BGYMV in lines of DOR 303, which showed typical symptoms. Sampfes from Macroptilium lathyroides, a weed that might be a possible reservoir of the virus, were also tested for viraf infection. ELISA tests were inconclusive for detection of geminiviruses in M. lathyroides. Polymerase Chain Reaction (PCR) was also used to complement BGYMV diagnosis in M. lathyroides and in bean lines that showed symptoms but were negative for the ELfSA test. Two sets of primers, specific for Begomovirus such as BGYMV, were used in PCR experiments. Using PCR, we were able to detect the virus in the line DOR 303 and in M. lathyroides tissues.


Plant Disease ◽  
2003 ◽  
Vol 87 (9) ◽  
pp. 1022-1025 ◽  
Author(s):  
V. Bracero ◽  
L. I. Rivera ◽  
J. S. Beaver

The leguminous weed Macroptilium lathyroides is considered a potential host of the Bean golden yellow mosaic virus (BGYMV; BGMV = Mesoamerican isolates). To determine if M. lathyroides could be a host for BGYMV, an infectivity cycle was established between this weed and Phaseolus vulgaris. Virus transmission was carried out using the whitefly, Bemisia argentifolli, as a vector. Inoculated plants of both species were examined for symptoms such as mosaic, stunting, and leaf distortion. P. vulgaris and M. lathyroides showed golden yellow mosaic symptoms during all infectivity cycle stages. Symptomatic plants of both species were tested for BGYMV using polymerase chain reaction (PCR) and nucleotide sequence analysis. Two degenerate primers sets were used for PCR to detect viral DNA: PAL1v1978/PAR1c715 and PCRc2/PBL12039. PCR analysis using primers PCRc2/PBL12039 amplified viral DNA for component B from both plant species. Nucleotide sequence analysis revealed a 93% identity between the virus isolated from M. lathyroides and the Puerto Rican isolate of BGYMV. These results confirmed that M. lathyroides could serve as an alternative host of BGYMV and that an infectivity cycle of BGYMV could possibly occur between P. vulgaris and M. lathyroides in Puerto Rico.


2000 ◽  
Vol 90 (11) ◽  
pp. 1224-1232 ◽  
Author(s):  
E. R. Garrido-Ramirez ◽  
M. R. Sudarshana ◽  
R. L. Gilbertson

The complete nucleotide (nt) sequences of the cloned DNA-A (2644 nts) and DNA-B (2609 nts) components of Bean golden yellow mosaic virus (BGYMV-MX) from Chiapas, Mexico were determined. The genome organization of BGYMV-MX is similar to that of other Western Hemisphere bipartite geminiviruses (genus Begomovirus). Infectivity of the cloned BGYMV-MX DNA components in common bean (Phaseolus vulgaris) plants was demonstrated by particle bombardment and agroinoculation. BGYMV-MX was identified as a BGYMV (previously type II BGMV) isolate based on sequence analyses, sap-transmissibility, and pseudorecombination experiments with other bean-infecting begomoviruses. On the basis of differences in the DNA-B hypervariable region, symptom phenotype, and properties of infectious pseudorecombinants, BGYMV-MX may represent a distinct strain of BGYMV. Pseudorecombination experiments further established that BGYMV symptom determinants mapped to DNA-B, and that BGYMV-MX was most closely related to BGYMV from Guatemala. A Tomato leaf crumple virus (TLCrV) DNA-A/BGYMV-MX DNA-B pseudorecombinant was infectious in bean, establishing that a viable reassortant can be formed between begomovirus species from different phylogenetic clusters. Bean germ plasm representing the two major gene pools (Andean and Mesoamerican) was screened for response to BGYMV-MX with three methods of inoculation: sap-inoculation, particle bombardment, and agroinoculation. Andean germ plasm was very susceptible and similar results were obtained with all three methods, whereas Mesoamerican germ plasm showed resistance to BGYMV-MX, particularly with agroinoculation.


2007 ◽  
Vol 132 (4) ◽  
pp. 530-533 ◽  
Author(s):  
Juan M. Osorno ◽  
Carlos G. Muñoz ◽  
James S. Beaver ◽  
Feiko H. Ferwerda ◽  
Mark J. Bassett ◽  
...  

Bean golden yellow mosaic virus (BGYMV), incited by a whitefly (Bemisia tabaci Gennadius) transmitted geminivirus, is an important disease that can limit common bean (Phaseolus vulgaris L.) production in Central America, the Caribbean, and southern Florida. Only a few genes are currently deployed in BGYMV-resistant common bean cultivars. The identification of novel sources of resistance would help bean breeders broaden the genetic base of resistance to this important virus. Phaseolus coccineus L. germplasm accession G35172 was found by International Center for Tropical Agriculture scientists to be resistant to BGYMV. Populations derived from an interspecific cross between P. vulgaris and P. coccineus were evaluated to study the inheritance of resistance to BGYMV. Segregation ratios of F2 plants and other populations suggest that BGYMV resistance from P. coccineus is controlled by two genes. A recessive gene, with the proposed symbol bgm-3, confers resistance to leaf chlorosis and a dominant gene, with the proposed name Bgp-2, prevents pod deformation in the presence of BGYMV. Results from allelism tests with previously reported BGYMV resistance genes (bgm, bgm-2, and Bgp) and the absence of the SR-2 sequence-characterized amplified region marker for bgm support the hypothesis that bgm-3 and Bgp-2 are different genes for BGYMV resistance.


Plant Disease ◽  
2003 ◽  
Vol 87 (10) ◽  
pp. 1205-1212 ◽  
Author(s):  
J. L. Potter ◽  
M. K. Nakhla ◽  
L. Mejía ◽  
D. P. Maxwell

Begomoviruses are a major problem for common bean production in the tropics and subtropics of the Americas and the Caribbean. Multiplex polymerase chain reaction (PCR) primer pairs and nucleic acid hybridization probes have been developed to differentiate five bean-infecting begomoviruses and were used to assay reference and field-collected bean samples from Florida, Mexico, Central America, the Caribbean, and Brazil. Bean golden mosaic virus was found in Brazil, Bean calico mosaic virus in Mexico, and Bean golden yellow mosaic virus in Central America, the Caribbean, and Florida. Bean dwarf mosaic virus was not detected in any of the field samples. Tomato yellow leaf curl virus was found only in tomato samples from the Caribbean. These detection methods will provide tools to assist in the understanding of the epidemiology and diversity of geminiviruses as well as to facilitate resistance breeding, cultivar selection, and development of strategies for control.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alvaro Soler-Garzón ◽  
Atena Oladzad ◽  
James Beaver ◽  
Stephen Beebe ◽  
Rian Lee ◽  
...  

Genetic resistance is the primary means for control of Bean golden yellow mosaic virus (BGYMV) in common bean (Phaseolus vulgaris L.). Breeding for resistance is difficult because of sporadic and uneven infection across field nurseries. We sought to facilitate breeding for BGYMV resistance by improving marker-assisted selection (MAS) for the recessive bgm-1 gene and identifying and developing MAS for quantitative trait loci (QTL) conditioning resistance. Genetic linkage mapping in two recombinant inbred line populations and genome-wide association study (GWAS) in a large breeding population and two diversity panels revealed a candidate gene for bgm-1 and three QTL BGY4.1, BGY7.1, and BGY8.1 on independent chromosomes. A mutation (5 bp deletion) in a NAC (No Apical Meristem) domain transcriptional regulator superfamily protein gene Phvul.003G027100 on chromosome Pv03 corresponded with the recessive bgm-1 resistance allele. The five bp deletion in exon 2 starting at 20 bp (Pv03: 2,601,582) is expected to cause a stop codon at codon 23 (Pv03: 2,601,625), disrupting further translation of the gene. A Tm-shift assay marker named PvNAC1 was developed to track bgm-1. PvNAC1 corresponded with bgm-1 across ∼1,000 lines which trace bgm-1 back to a single landrace “Garrapato” from Mexico. BGY8.1 has no effect on its own but exhibited a major effect when combined with bgm-1. BGY4.1 and BGY7.1 acted additively, and they enhanced the level of resistance when combined with bgm-1. Tm-shift assay markers were generated for MAS of the QTL, but their effectiveness requires further validation.


Plant Disease ◽  
2002 ◽  
Vol 86 (9) ◽  
pp. 1049-1049 ◽  
Author(s):  
P. L. Ramos ◽  
A. Fernández ◽  
G. Castrillo ◽  
L. Díaz ◽  
A. L. Echemendía ◽  
...  

Macroptilium lathyroides (L) is a weed that is widely distributed in Cuba. Frequently, leaves show bright yellow mosaic symptoms, which suggest the incidence of a viral disease. Since begomovirus occurrence in Macroptilium lathyroides has been previously reported in other islands of the Caribbean (1,3), symptomatic plants from three distant places in Cuba (Havana, Villa Clara, and Camaguey), were collected and tested for the presence of begomoviruses. Plant DNA extracts were analyzed by Southern blot hybridization and polymerase chain reaction with two sets of degenerate primers (2). The presence of a bipartite begomovirus was evident through strong hybridization signals obtained with the DNA-A and DNA-B of Taino tomato mottle virus as probes at low stringency. Furthermore, 1.4-kb and 1.2-kb PCR amplified fragments were obtained with DNA-A degenerate primers, PAL1v1978-PAR1c715 and PAL1c1960-PAR1v722, respectively. Both PCR fragments from the samples from the three locations were cloned, and restriction fragment length polymorphism analysis of the 1.4-kb fragments were performed using PstI, EcoRI, HincII, XbaI and BglII. Restriction fragment patterns were the same for the three clones. The DNA-A sequence (GenBank Accession No. AJ344452) of the isolate from Villa Clara was compared with sequences available for other geminiviruses using CLUSTAL program. For the coat protein (CP) gene, the comparisons had the highest percentage of identity with various strains of Bean golden yellow mosaic virus (BGYMV, GenBank Accession Nos. AF173555, M91604, and L01635) (85 to 87% and 93 to 94%, nucleotide and amino acid sequences, respectively). For Rep gene (1,044 nt), the best percentages of identities were with BGYMV (81 to 82% and 80 to 82% nucleotide and amino acid sequences, respectively), Tomato leaf crumple virus (GenBank Accession No. AF101476) (78 and 81%, nucleotide and amino acid sequences, respectively), and Sida golden mosaic virus from Florida (GenBank Accession No. AF049336) (78 and 79%, nucleotide and amino acid sequences, respectively). Finally, the comparative analysis of the intergenic region (i.e. the common region plus the CP gene promoter) had the highest identity with BGYMV (56 to 55%) and Tomato severe rugose virus (GenBank Accession No. AY029750) (49%). Interestingly, this virus has in this region the three G-box elements that are characteristic of BGYMV but it differs in the Rep protein-binding iterative motif that is GGTGA instead of GGAGA, for BGYMV. These data indicate that this virus is a new begomovirus and the name of Macroptilium yellow mosaic virus (MaYMV) is proposed. References: (1) A. M. Idris et al. Plant Dis. 83:1071, 1999. (2) M. R. Rojas et al. Plant Dis. 77:340, 1993. (3) M. E. Roye et al. Plant Dis. 81:1251, 1997.


Plant Disease ◽  
2001 ◽  
Vol 85 (9) ◽  
pp. 1030-1030 ◽  
Author(s):  
A. L. Echemendía ◽  
P. L. Ramos ◽  
R. Peral ◽  
A. Fuentes ◽  
G. González ◽  
...  

In Cuba, the emergence of bean golden mosaic was associated with high populations of Bemisia tabaci in common bean (Phaseolus vulgaris L.) plantings in the 1970s (1). During the last two decades, the disease has caused significant economic losses, forcing some growers to abandon bean production. In Holguín, one of the main bean producing provinces of the country, about 2,000 ha of beans were abandoned in 1991 due to the high incidence of this whitefly-transmitted virus. At that time, yield losses associated with this disease reached 90 to 100% in farmer's fields. In spite of various control measures, the disease affected 33, 28, and 6.5% of the total area planted in Cuba to common bean in 1990, 1992, and 1996, respectively. For this investigation, common bean leaves showing systemic yellowing symptoms were collected in fields located in the provinces of Havana, Matanzas, and Holguín during 1998-1999. Sap and total DNA leaf extracts were used to inoculate healthy bean plants by manual and biolistic procedures, respectively. Characteristic yellowing symptoms were more efficiently reproduced using a particle gun device than by manual inoculation (18/20 plants and 5/20 plants, respectively, for a Holguín virus isolate). DNA extracts were further analyzed by polymerase chain reaction using two degenerate primer sets: PAL1v1978-PAR1c715 and PAL1c1960-PAR1v722 (2). Fragments of approximately 1.4 and 1.2 kb were amplified and cloned. Restriction fragment length polymorphism analysis of the cloned 1.4-kb fragments was performed with BglII, HincII, SalI, EcoRI, PstI, and XbaI, indicating that selected isolates from the three Cuban provinces shared identical restriction patterns. The nucleotide sequence obtained from two clones of a virus isolate from Holguín, was compared to sequences available for other begomoviruses using BLAST. The Cuban isolate shared up to 94% nt sequence identity with various strains of Bean golden yellow mosaic virus (BGYMV) in the first 250 nt of the rep gene. For the common region (CR), scores were 93% for BGYMV-GA (Guatemala), 92% for BGYMV-MX (southern Mexico) and BGYMV-PR (Puerto Rico), and 91% for BGYMV-DR (Dominican Republic). The iterative sequence ATGGAG was identified in the CR of the Cuban BGYMV isolate, as reported for other BGYMV isolates. Finally, the Cuban begomovirus, hereafter referred to as BGYMV-CU, shared nt and aa sequence identities of 94 and 100%, respectively, with the coat protein gene of BGYMV-MX. We conclude that the begomovirus isolated from mosaic-affected common bean plants in the province of Holguín is a member of the Mesoamerican BGYMV group (3). References: (1) N. Blanco and C. Bencomo. Cienc. Agric. 2:39, 1978. (2) M. R. Rojas et al. Plant Dis. 77:340, 1993. (3) Morales and Anderson, Arch. Virol. 146:415, 2001.


Sign in / Sign up

Export Citation Format

Share Document