scholarly journals Sophorolipid treatment decreases inflammatory cytokine expression in an in vitro model of experimental sepsis

2006 ◽  
Vol 20 (4) ◽  
Author(s):  
Cathy M Mueller ◽  
Yin‐yao Lin ◽  
Domenico Viterbo ◽  
Joelle Pierre ◽  
Shirley A Murray ◽  
...  
Cytotherapy ◽  
2010 ◽  
Vol 12 (7) ◽  
pp. 870-880 ◽  
Author(s):  
Katrin Montzka ◽  
Tobias Führmann ◽  
Jochen Müller-Ehmsen ◽  
Michael Wöltje ◽  
Gary A. Brook

2015 ◽  
Vol 6 ◽  
Author(s):  
Ivana Zagotta ◽  
Elitsa Y. Dimova ◽  
Klaus-Michael Debatin ◽  
Martin Wabitsch ◽  
Thomas Kietzmann ◽  
...  

Placenta ◽  
2017 ◽  
Vol 57 ◽  
pp. 234-235
Author(s):  
Bernadette Baker ◽  
Helen Bischof ◽  
Frances Beards ◽  
Alexander Heazell ◽  
Colin Sibley ◽  
...  

2018 ◽  
Vol 96 (3) ◽  
pp. 304-307 ◽  
Author(s):  
Zahra Tavakoli Dargani ◽  
Reetu Singla ◽  
Taylor Johnson ◽  
Rakesh Kukreja ◽  
Dinender K. Singla

Doxorubicin (Dox) is an effective anticancer drug. Unfortunately, it causes cardiac and muscle toxicity due to increased oxidative stress and inflammation; however, it remains unknown whether Dox induces “pyroptosis” — an inflammation-mediated cell death. We investigated whether Dox induces pyroptosis in mouse soleus muscle (Sol 8) cells in vitro and to show the protective effect of embryonic stem cell exosomes (ES-exos) on pyroptosis. Dox and inflammation-induced in vitro model was generated. Pyroptosis was confirmed using immunohistochemistry (with putative markers caspase-1, IL-1β, and pro-inflammatory cytokine IL-18) and Western blotting of caspase-1 and IL-1β. The results show significant increase in the expression of caspase-1, IL-1β, and IL-18 following treatment with Dox, which was inhibited by ES-exos but not mouse embryonic fibroblast exosomes. Moreover, GW4869 compound inhibited functional activity of ES-exos, suggesting these vesicles are key players in the inhibition of pyroptosis. These results suggest that Dox induces inflammatory pyroptosis in Sol 8 cells, which is attenuated by ES-exos in vitro.


2021 ◽  
pp. 1-12
Author(s):  
F. Blanchet ◽  
L. Rault ◽  
V. Peton ◽  
Y. Le Loir ◽  
C. Blondeau ◽  
...  

Probiotics could help combat infections and reduce antibiotic use. As use of live bacteria is limited in some cases by safety or regulatory concerns, the potential of inactivated bacteria is worth investigating. We evaluated the potential of live and heat-inactivated Lactobacillus gasseri LA806 to counteract Staphylococcus aureus and Escherichia coli infection cycles in an in vitro model of bovine mastitis. We assessed the ability of live and inactivated LA806 to impair pathogen colonisation of bovine mammary epithelial cells (bMECs) and to modulate cytokine expression by pathogen-stimulated bMECs. Live LA806 induced a five-fold decrease in S. aureus adhesion and internalisation (while not affecting E. coli colonisation) and decreased pro-inflammatory cytokine expression by S. aureus-stimulated bMECs (without interfering with the immune response to E. coli). The ability of inactivated LA806 ability to diminish S. aureus colonisation was two-fold lower than that of the live strain, but its anti-inflammatory properties were barely impacted. Even though LA806 effects were impaired after inactivation, both live and inactivated LA806 have barrier and immunomodulatory properties that could be useful to counteract S. aureus colonisation in the bovine mammary gland. As S. aureus is involved in various types of infection, LA806 potential would worth exploring in other contexts.


Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Gholamreza Esmaeeli Djavid

Abstract. Wound healing consists of a series of highly orderly overlapping processes characterized by hemostasis, inflammation, proliferation, and remodeling. Prolongation or interruption in each phase can lead to delayed wound healing or a non-healing chronic wound. Vitamin A is a crucial nutrient that is most beneficial for the health of the skin. The present study was undertaken to determine the effect of vitamin A on regeneration, angiogenesis, and inflammation characteristics in an in vitro model system during wound healing. For this purpose, mouse skin normal fibroblast (L929), human umbilical vein endothelial cell (HUVEC), and monocyte/macrophage-like cell line (RAW 264.7) were considered to evaluate proliferation, angiogenesis, and anti-inflammatory responses, respectively. Vitamin A (0.1–5 μM) increased cellular proliferation of L929 and HUVEC (p < 0.05). Similarly, it stimulated angiogenesis by promoting endothelial cell migration up to approximately 4 fold and interestingly tube formation up to 8.5 fold (p < 0.01). Furthermore, vitamin A treatment was shown to decrease the level of nitric oxide production in a dose-dependent effect (p < 0.05), exhibiting the anti-inflammatory property of vitamin A in accelerating wound healing. These results may reveal the therapeutic potential of vitamin A in diabetic wound healing by stimulating regeneration, angiogenesis, and anti-inflammation responses.


Sign in / Sign up

Export Citation Format

Share Document