scholarly journals Protective Effect of Larportea aestuans Extract on Diclofenac ‐ Induced Oxidative Stress in the Brain of Male Wistar Rats

2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Omolola Elizabeth OMOTOSHO ◽  
Dipo Ogunlade
2016 ◽  
Vol 94 (10) ◽  
pp. 1074-1082 ◽  
Author(s):  
Dragan Hrncic ◽  
Jelena Mikić ◽  
Aleksandra Rasic-Markovic ◽  
Milica Velimirović ◽  
Tihomir Stojković ◽  
...  

The aim of this study was to examine the effects of a methionine-enriched diet on anxiety-related behavior in rats and to determine the role of the brain oxidative status in these alterations. Adult male Wistar rats were fed from the 30th to 60th postnatal day with standard or methionine-enriched diet (double content comparing with standard diet: 7.7 g/kg). Rats were tested in open field and light–dark tests and afterwards oxidative status in the different brain regions were determined. Hyperhomocysteinemia induced by methionine-enriched diet in this study decreased the number of rearings, as well as the time that these animals spent in the center of the open field, but increased index of thigmotaxy. Oxidative status was selectively altered in the examined regions. Lipid peroxidation was significantly increased in the cortex and nc. caudatus of rats developing hyperhomocysteinemia, but unaltered in the hippocampus and thalamus. Based on the results of this research, it could be concluded that hyperhomocysteinemia induced by methionine nutritional overload increased anxiety-related behavior in rats. These proanxiogenic effects could be, at least in part, a consequence of oxidative stress in the rat brain.


2008 ◽  
Vol 24 (4) ◽  
pp. 247-256 ◽  
Author(s):  
D Mishra ◽  
SJS Flora

Chronic arsenic poisoning caused by contaminated drinking water is a wide spread and worldwide problem particularly in India and Bangladesh. One of the possible mechanisms suggested for arsenic toxicity is the generation of reactive oxygen species (ROS). The present study was planned 1) to evaluate if chronic exposure to arsenic leads to oxidative stress in blood and brain – parts of male Wistar rats and 2) to evaluate which brain region of the exposed animals was more sensitive to oxidative injury. Male Wistar rats were exposed to arsenic (50 ppm sodium arsenite in drinking water) for 10 months. The brain was dissected into five major parts, pons medulla, corpus striatum, cortex, hippocampus, and cerebellum. A number of biochemical variables indicative of oxidative stress were studied in blood and different brain regions. Single-strand DNA damage using comet assay was also assessed in lymphocytes. We observed a significant increase in blood and brain ROS levels accompanied by the depletion of GSH/GSSG ratio and glucose-6-phosphate dehydrogenase (G6PD) activity in different brain regions of arsenic-exposed rats. Chronic arsenic exposure also caused significant single-strand DNA damage in lymphocytes as depicted by comet with a tail in arsenic-exposed cells compared with the control cells. On the basis of results, we concluded that the cortex region of the brain was more sensitive to oxidative injury compared with the other regions studied. The present study, thus, leads us to suggest that arsenic induces differential oxidative stress in brain regions with cortex followed by hippocampus and causes single-strand DNA damage in lymphocytes.


2021 ◽  
Vol 15 (4) ◽  
pp. 249-256
Author(s):  
Taiwo Adekemi Abayomi ◽  
◽  
Olorunfemi Samuel Tokunbo ◽  
Moyinoluwa Ajayi ◽  
Olawale Ayobami Abayomi ◽  
...  

Background: Although ethanol exerts its neurotoxic effect on the brain through inflammatory and oxidative processes, the effect of Riboceine on the brain following ethanol neurotoxicity is yet to be elucidated. Therefore, this study was designed to evaluate the effects of riboceine on the cellular, behavioral, and molecular impairments induced by ethanol toxicity in rats. Methods: A total of 24 male Wistar rats weighing between 160-170 grams were used for the study, and were divided into four groups of six rats each. After completion of the administration of ethanol and riboceine, and testing for motor impairment, the rats were sacrificed. The cerebellum was excised and processed for oxidative stress analyses, based on oxidative stress markers and histological examinations. The immunohistochemical expression of astrocytes in the cerebellum was examined, using Glial Fibrillary Acidic Protein (GFAP) stain. Results: This study demonstrated that ethanol-induced neurotoxicity in the cerebellum, characterized by increased oxidative stress profile, astrocyte activation, and neuronal death in the cerebellum, especially the Purkinje layer. Necrosis, significant decrease in Superoxide Dismutase (SOD), Catalase (CAT) and Gluathione (GSH) activities (P<0.05) as well as astrogliosis was associated with ethanol treatment. However, riboceine was observed to significantly increase the cerebellar SOD, CAT and GSH activities with significantly reduced Malondialdehyde (MDA) levels (P<0.05). It also attenuated the histomorphological alteration of the cerebellum and reduced the cerebellar astrocytes activation following ethanol-induced neurotoxicity, thus leading to the attenuation of motor impairment. Conclusion: Riboceine attenuated motor impairment caused by chronic ethanol-induced neurotoxicity, suggestive of its anti-oxidative and anti-inflammatory properties.


2020 ◽  
Vol 33 (4) ◽  
pp. 191-196
Author(s):  
Omotayo B. Ilesanmi ◽  
Obade Efe ◽  
Temitope T. Odewale ◽  
Frances O. Atanu ◽  
Esther F. Adeogun ◽  
...  

Abstract We earlier reported the protective effect of Solanum dasyphyllum against cyanide neurotoxicity. In furtherance to this, we investigated the protective effect of S. dasyphyllum against rotenone, a chemical toxin that causes brain-related diseases. Mitochondria fraction obtained from the brain of male Wistar rats was incubated with various solvents (hexane, dichloromethane, ethylacetate, and methanol) extracts of S. dasyphyllum before rotenone exposure. Mitochondria respiratory enzymes (MRE) were evaluated along with markers of oxidative stress. The inhibition of MRE by rotenone was reversed by treatment with various fractions of S. dasyphyllum. The oxidative stress induced by rotenone was also reversed by fractions of S. dasyphyllum. In addition, the ethylacetate fraction of S. dasyphyllum was most potent against rotenone-induced neurotoxicity. In conclusion, S. dasyphyllum is rich in active phytochemicals that can prevent some neurotoxic effects of rotenone exposure. Further study can be done in an in vivo model to substantiate our results.


Author(s):  
Sunny O. Abarikwu ◽  
Sussan Benjamin ◽  
Sunday Godspower Ebah ◽  
Godbless Obilor ◽  
Goodluck Agbam

Abstract:Background:Various parts of theMethods:Male Wistar rats were administered MO (1.798 mg/kg p.o.) or HgClResults:In the liver, malondialdehyde (MDA) level, glutathione (GSH), and superoxide dismutase (SOD) activities were higher whereas catalase (CAT) activity was lower in the HgClConclusions:MO decreased the negative effects of Hg-induced oxidative stress in rats.


2018 ◽  
Vol 43 (1) ◽  
pp. 85-95 ◽  
Author(s):  
Mohammad Javad Khodayar ◽  
Heibatollah Kalantari ◽  
Masoud Mahdavinia ◽  
Layasadat Khorsandi ◽  
Soheila Alboghobeish ◽  
...  

Life Sciences ◽  
2006 ◽  
Vol 79 (23) ◽  
pp. 2187-2193 ◽  
Author(s):  
Maria H.V.M. Jacob ◽  
Mauro R.N. Pontes ◽  
Alex S.R. Araújo ◽  
Jaqueline Barp ◽  
Maria C. Irigoyen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document