Differential control of COX‐2 expression in macula densa cells under calcineurin inhibition by cyclosporin A

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Junda Hu ◽  
Yan Xu ◽  
Kerim Mutig ◽  
Sebastian Bachmann
2001 ◽  
Vol 12 (5) ◽  
pp. 867-874
Author(s):  
HAYO CASTROP ◽  
FRANK SCHWEDA ◽  
KARL SCHUMACHER ◽  
KONRAD WOLF ◽  
ARMIN KURTZ

Abstract. This study aimed to assess the role of cyclooxygenase-2 (COX-2)-derived prostanoids for the macula densa control of renal afferent arteriolar resistance and for renin secretion. For this purpose, studied were the effects of blocking macula densa salt transport by the loop diuretic bumetanide (100 μM) on renal perfusate flow and on renin secretion in isolated perfused rats, in which renocortical COX-2 expression was prestimulated in vivo by treatment with the angiotensin-converting enzyme inhibitor ramipril, with low-salt diet, or with a combination of both. These maneuvers stimulated COX-2 expression in an order of ramipril + low salt ≫ low salt > ramipril > controls. Flow rates through isolated kidneys at a constant pressure of 100 mmHg were dependent on the pretreatment regimen, in the way that they went in parallel with COX-2 expression. The COX-2 inhibitor NS-398 (10 μM) lowered flow rates depending on the COX-2 expression level and was most pronounced therefore after pretreatment with low salt + ramipril. NS-398 did not change the increase of flow in response to bumetanide but attenuated the stimulation of renin secretion in response to bumetanide in a manner depending on the expression level of COX-2. These findings suggest that in states of increased renocortical expression of COX-2, overall renal vascular resistance and the macula densa control of renin secretion become dependent on COX-2—derived prostanoids.


2003 ◽  
Vol 284 (3) ◽  
pp. F498-F502 ◽  
Author(s):  
Andrea Hartner ◽  
Nada Cordasic ◽  
Margarete Goppelt-Struebe ◽  
Roland Veelken ◽  
Karl F. Hilgers

Upregulation of the inducible cyclooxygenase (COX-2) in the macula densa accompanies the activation of the juxtaglomerular apparatus in many high-renin conditions. The functional role of COX-2 in these disease states is poorly understood. We tested whether COX-2 is required to increase renin in renovascular hypertension. Rats with established two-kidney, one-clip (2K1C) hypertension were treated for 2 wk with two different inhibitors of COX-2, NS-398 and rofecoxib, respectively. Hypertension in 2K1C rats was not affected or slightly enhanced by COX-2 inhibition, as measured intra-arterially in conscious animals. The increase in plasma renin activity was also unchanged by both rofecoxib and NS-398. The number of glomeruli with a renin-positive juxtaglomerular apparatus was elevated in clipped kidneys and decreased in contralateral kidneys of 2K1C rats. This pattern was unaltered by COX-2 inhibition. To test the effects of COX-2 blockade on a primarily macula densa-mediated stimulus, we studied salt depletion for comparison. A low-salt diet induced a significant increase in plasma renin activity, which was partially inhibited by treatment with NS-398. We conclude that inhibition of COX-2 in established renovascular hypertension does not affect renin synthesis or release. Thus either COX-2 is not necessary for the macula densa mechanism or the macula densa is not important for maintaining high renin in renovascular hypertension.


ChemBioChem ◽  
2004 ◽  
Vol 5 (9) ◽  
pp. 1169-1169
Author(s):  
Yixin Zhang ◽  
Ria Baumgrass ◽  
Mike Schutkowski ◽  
Gunter Fischer

2008 ◽  
Vol 29 (1) ◽  
pp. 87-97 ◽  
Author(s):  
Lamin Han Mbye ◽  
Indrapal N Singh ◽  
Kimberly M Carrico ◽  
Kathryn E Saatman ◽  
Edward D Hall

Earlier experiments have shown that cyclosporin A (CsA) and its non-calcineurin inhibitory analog NIM811 attenuate mitochondrial dysfunction after experimental traumatic brain injury (TBI). Presently, we compared the neuroprotective effects of previously determined mitochondrial protective doses of CsA (20 mg/kg intraperitoneally) and NIM811 (10 mg/kg intraperitoneally) when administered at 15 mins postinjury in preventing cytoskeletal (α-spectrin) degradation, neuro-degeneration, and neurological dysfunction after severe (1.0 mm) controlled cortical impact (CCI) TBI in mice. In a first set of experiments, we analyzed calpain-mediated α-spectrin proteolysis at 24 h postinjury. Both NIM811 and CsA significantly attenuated the increased α-spectrin breakdown products observed in vehicle-treated animals ( P < 0.005). In a second set of experiments, treatment of animals with either NIM811 or CsA at 15 mins and again at 24 h postinjury attenuated motor function impairment at 48 h and 7 days ( P < 0.005) and neurodegeneration at 7 days postinjury ( P < 0.0001). Delayed administration of NIM811 out to 12 h was still able to significantly reduce α-spectrin degradation. These results show that the neuroprotective mechanism of CsA involves maintenance of mitochondrial integrity and that calcineurin inhibition plays little or no role because the non-calcineurin inhibitory analog, NIM811, is as effective as CsA.


2004 ◽  
Vol 287 (1) ◽  
pp. F152-F159 ◽  
Author(s):  
Alex Paliege ◽  
Diane Mizel ◽  
Carmen Medina ◽  
Anita Pasumarthy ◽  
Yuning G. Huang ◽  
...  

It is well established that cyclooxygenase-2 (COX-2) and the neuronal form of nitric oxide synthase (nNOS) are coexpressed in macula densa cells and that the expression of both enzymes is stimulated in a number of high-renin states. To further explore the role of nNOS and COX-2 in renin secretion, we determined plasma renin activity in mice deficient in nNOS or COX-2. Plasma renin activity was significantly reduced in nNOS −/− mice on a mixed genetic background and in COX-2 −/− mice on either BALB/c or C57/BL6 congenic backgrounds. In additional studies, we accumulated evidence to show an inhibitory influence of PGE2 on nNOS expression. In a cultured macula densa cell line, PGE2 significantly reduced nNOS mRNA expression, as quantified by real-time RT-PCR. In COX-2 −/− mice, nNOS mRNA expression in the kidney, determined by real-time RT-PCR, was upregulated throughout the postnatal periods, ranging from postnatal day ( PND) 3 to PND 60. The induction of nNOS protein expression and NOS activity in COX-2 −/− mice was localized to macula densa cells using immunohistochemistry and NADPH-diaphorase staining methods, respectively. Therefore, these findings reveal that the absence of either COX-2 or nNOS is associated with suppressed renin secretion. Furthermore, the inhibitory effect of PGE2 on nNOS mRNA expression indicates a novel interaction between NO and prostaglandin-mediated pathways of renin regulation.


2014 ◽  
Vol 307 (4) ◽  
pp. F461-F470 ◽  
Author(s):  
Fara Saez ◽  
Virginia Reverte ◽  
Alexander Paliege ◽  
Juan Manuel Moreno ◽  
María T. Llinás ◽  
...  

Numerous studies have evaluated blood pressure (BP) and renal changes in several models of developmental programming of hypertension. The present study examined to what extent BP, renal hemodynamic, and renal structure are affected at an old age in male and female animals with altered renal development. It also evaluated whether renal damage is associated with changes in cyclooxygenase (COX)-2 and neuronal nitric oxide synthase (NOS1) expression and immunoreactivity. Experiments were carried out in rats at 10–11 and 16–17 mo of age treated with vehicle or an ANG II type 1 receptor antagonist during the nephrogenic period (ARAnp). A progressive increment in BP and a deterioration of renal hemodynamics were found in both sexes of ARAnp-treated rats, with these changes being greater ( P < 0.05) in male rats. The decrease in glomerular filtration rate at the oldest age was greater ( P < 0.05) in male (74%) than female (32%) ARAnp-treated rats. Sex-dependent deterioration of renal structure was demonstrated in optical and electron microscopic experiments. COX-2 and NOS1 immunoreactivity were enhanced in the macula densa of male but not female ARAnp-treated rats. The present study reports novel findings suggesting that stimuli that induce a decrease of ANG II effects during renal development lead to a progressive increment in BP and renal damage at an old age in both sexes, but these BP and renal changes are greater in males than in females. The renal damage is associated with an increase of COX-2 and NOS1 in the macula densa of males but not females with altered renal development.


Blood ◽  
2004 ◽  
Vol 103 (2) ◽  
pp. 413-421 ◽  
Author(s):  
Taoyong Chen ◽  
Jun Guo ◽  
Mingjin Yang ◽  
Chaofeng Han ◽  
Minghui Zhang ◽  
...  

Abstract Migration of dendritic cells (DCs) into tissues and secondary lymphoid organs plays a crucial role in the initiation of innate and adaptive immunity. In this article, we show that cyclosporin A (CsA) impairs the migration of DCs both in vitro and in vivo. Exposure of DCs to clinical concentrations of CsA neither induces apoptosis nor alters development but does impair cytokine secretion, chemokine receptor expression, and migration. In vitro, CsA impairs the migration of mouse bone marrow–derived DCs toward macrophage inflammatory protein-3β (MIP-3β) and induces them to retain responsiveness to MIP-1α after lipopolysaccharide (LPS)–stimulated DC maturation, while in vivo administration of CsA inhibits the migration of DCs out of skin and into the secondary lymphoid organs. CsA impairs chemokine receptor and cyclooxygenase-2 (COX-2) expression normally triggered in LPS-stimulated DCs; administration of exogenous prostaglandin E2 (PGE2) reverses the effects of CsA on chemokine receptor expression and DC migration. Inhibition of nuclear factor–κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathway signaling by CsA may be responsible for the CsA-mediated effects on the regulation of chemokine receptor and cyclooxygenase-2 (COX-2) expression. Impairment of DC migration due to inhibition of PGE2 production and regulation of chemokine receptor expression may contribute, in part, to CsA-mediated immunosuppression.


2000 ◽  
Vol 9 (5) ◽  
pp. 243-248 ◽  
Author(s):  
Anália Carmo ◽  
José G. Cunha-Vaz ◽  
Arsélio P. Carvalho ◽  
Maria Celeste Lopes

Background:Our previous results showed that in retinas from streptozotocin (STZ)-induced diabetic rats there is an increased level of interleukin-1β (IL-1β ). This cytokine may be involved in the expression of the inducible isoform of the nitric oxide synthase (iNOS), with consequent synthesis of large amounts of NO and blood–retinal barrier (BRB) breakdown.Aims:The aim of this work was to examine whether the administration of cyclosporin-A (Cs-A) to STZinduced diabetic rats inhibits the synthesis of IL-1β and the expression of the inducible proteins, iNOS and cyclo-oxygenase-2 (COX-2) in retinal cells, and whether the activity of these proteins contribute to BRB breakdown.Methods:The level of IL-1β was evaluated by ELISA and the NO production by L-{3H}-citrulline formation. Expression of iNOS and COX-2 proteins was determined by two methods, western blot and immunohistochemistry. The permeability of the BRB was assessed by quantification of the vitreous protein.Results and discussion:Our results indicated that the levels of IL-1β and NO in retinas from Cs-A-treated diabetic rats are significantly reduced, as compared to that in non-treated diabetic rats. The treatment of diabetic rats with Cs-A also significantly inhibited the expression of the inducible proteins, iNOS and COX2. The evaluation of the vitreous protein content revealed that Cs-A also reduces the BRB permeability. Taken together, these results suggest that the increased production of the inflammatory mediators, IL-1β and NO, in diabetes may affect the BRB permeability and therefore contribute to the development of diabetic retinopathy.


2011 ◽  
Vol 301 (3) ◽  
pp. F529-F535 ◽  
Author(s):  
Xiaolong Zhu ◽  
R. Davis Manning ◽  
Deyin Lu ◽  
Celso E. Gomez-Sanchez ◽  
Yiling Fu ◽  
...  

Two major factors which regulate tubuloglomerular feedback (TGF)-mediated constriction of the afferent arteriole are release of superoxide (O2−) and nitric oxide (NO) by macula densa (MD) cells. MD O2− inactivates NO; however, among the factors that increase MD O2− release, the role of aldosterone is unclear. We hypothesize that aldosterone activates the mineralocorticoid receptor (MR) on MD cells, resulting in increased O2− production due to upregulation of cyclooxygenase-1 (COX-2) and NOX-2, and NOX-4, isoforms of NAD(P)H oxidase. Studies were performed on MMDD1 cells, a renal epithelial cell line with properties of MD cells. RT-PCR and Western blotting confirmed the expression of MR. Aldosterone (10−8 mol/l for 30 min) doubled MMDD1 cell O2− production, and this was completely blocked by MR inhibition with 10−5 mol/l eplerenone. RT-PCR, real-time PCR, and Western blotting demonstrated aldosterone-induced increases in COX-2, NOX-2, and NOX-4 expression. Inhibition of COX-2 (NS398), NADPH oxidase (apocynin), or a combination blocked aldosterone-induced O2− production to the same degree. These data suggest that aldosterone-stimulated MD O2− production is mediated by COX-2 and NADPH oxidase. Next, COX-2 small-interfering RNA (siRNA) specifically decreased COX-2 mRNA without affecting NOX-2 or NOX-4 mRNAs. In the presence of the COX-2 siRNA, the aldosterone-induced increases in COX-2, NOX-2, and NOX-4 mRNAs and O2− production were completely blocked, suggesting that COX-2 causes increased expression of NOX-2 and NOX-4. In conclusion 1) MD cells express MR; 2) aldosterone increases O2− production by activating MR; and 3) aldosterone stimulates COX-2, which further activates NOX-2 and NOX-4 and generates O2−. The resulting balance between O2− and NO in the MD is important in modulating TGF.


Sign in / Sign up

Export Citation Format

Share Document