scholarly journals A Low‐Potential Terminal Oxidase Associated with the Iron‐Only Nitrogenase from the Nitrogen‐Fixing Bacterium Azotobacter vinelandii

2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Febin Varghese ◽  
Burak Kabasakal ◽  
Charles Cotton ◽  
Jörg Schumacher ◽  
A. Rutherford ◽  
...  
2019 ◽  
Vol 294 (24) ◽  
pp. 9367-9376 ◽  
Author(s):  
Febin Varghese ◽  
Burak Veli Kabasakal ◽  
Charles A. R. Cotton ◽  
Jörg Schumacher ◽  
A. William Rutherford ◽  
...  

1969 ◽  
Vol 15 (7) ◽  
pp. 797-807 ◽  
Author(s):  
Peter Jurtshuk ◽  
Ann K. May ◽  
Leodocia M. Pope ◽  
Patricia R. Aston

A comparative study was undertaken to examine the succinate and terminal oxidase activities of the electron-transport systems of Azotobacter vinelandii and mammalian mitochondria. For succinate oxidation, both systems exhibited similar relative specificities for the electron acceptors phenazine methosulfate, O2, methylene blue, K3Fe(CN)6, nitrotetrazolium blue, 2,6-dichlorophenolindophenol (DCIP), and cytochrome c. They differed in that DCIP and cytochrome c were less active in the Azotobacter electron-transport system (R3 fraction) than in the bovine mitochondrial system. Comparative studies with known inhibitors of mammalian mitochondrial electron-transport demonstrated that the succinoxidase activity of the Azotobacter R3 fraction was, at least, 2000 times less sensitive to antimycin A, 700 times less sensitive to thenoyl-trifluoroacetone, and 30 times less sensitive to 2-n-heptyl-4-hydroxy-quinoline-N-oxide. Both systems were equally sensitive to KCN, p-chloromercuribenzoic acid, and chlorpromazine.The ability of the two systems to use tetramethyl-p-phenylenediamine (TMPD) and its derivatives as electron donors, for terminal oxidation, was also similar. Studies on steady state reduction revealed that in the Azotobacter R3 fraction, the cytochromes (a2, a1, b1, c4 + c5) and flavoprotein components were reduced substantially by succinate as well as by TMPD in the presence of ascorbate. Ultrastructure analyses of the Azotobacter R3 electron-transport fraction revealed the vesicular membranous components identified as oxidosomes according to the terminology used by DeLey and contained spherical headpiece units of 80 Å in diameter which appeared to be morphologically identical with the tripartite units or the elementary particles described by Green and associates, viz., Kopaczyk et al., and by Fernandez-Moran et al.


1982 ◽  
Vol 28 (4) ◽  
pp. 389-397 ◽  
Author(s):  
William J. Page

Competence development in nitrogen-fixing Azotobacter vinelandii cells was optimal at pH 7.2–7.4 which necessitated additional buffering of the iron-limited nitrogen-free competence medium or the addition of a suitable organic acid salt, e.g., sodium acetate. An autolysin was active in this pH range and competent cells were more susceptible to autolysis than the general cell population. Competence development also required restricted aeration of the culture, and only those cultures that attained zero dissolved oxygen became competent. Restricted aeration served to protect the iron-limited cell nitrogenase from oxygen inactivation thus allowing the culture to reach zero dissolved oxygen. The inclusion of additional sources of reductant, e.g., malate, in buffered competence medium resulted in increased respiration and protection of nitrogenase, increased cell mass, and poly-β-hydroxybutyrate synthesis, but decreased competence. A possible explanation for the apparent competition between competence development and nitrogenase activity is discussed.


2007 ◽  
Vol 20 (10) ◽  
pp. 1241-1249 ◽  
Author(s):  
Manuel J. Granados-Baeza ◽  
Nicolás Gómez-Hernández ◽  
Yolanda Mora ◽  
María J. Delgado ◽  
David Romero ◽  
...  

Symbiotic nitrogen-fixing bacteria express a terminal oxidase with a high oxygen affinity, the cbb3-type oxidase encoded by the fixNOQP operon. Previously, we have shown that, in Rhizobium etli CFN42, the repeated fixNOQP operons (fixNOQPd and fixNOQPf) have a differential role in nitrogen fixation. Only the fixNOQPd operon is required for the establishment of an effective symbiosis; microaerobic induction of this operon is under the control of at least three transcriptional regulators, FixKf, FnrNd, and FnrNchr, belonging to the Crp/Fnr family. In this work, we describe two novel Crp/Fnr-type transcriptional regulators (StoRd and StoRf, symbiotic terminal oxidase regulators) that play differential roles in the control of key genes for nitrogen fixation. Mutations either in stoRd or stoRf enhance the microaerobic expression of both fixNOQP reiterations, increasing also the synthesis of the cbb3-type oxidase in nodules. Despite their structural similarity, a differential role of these genes was also revealed, since a mutation in stoRd but not in stoRf enhanced both the expression of fixKf and the nitrogen-fixing capacity of R. etli CFN42.


1975 ◽  
Vol 21 (6) ◽  
pp. 738-741 ◽  
Author(s):  
W. G. W. Kurz ◽  
T. A. LaRue

Azotobacter vinelandii growing under nitrogen-fixing conditions has higher specific activities of isocitric and malic dehydrogenase than do cells growing on nitrate or ammonia. Results show that the source of nitrogen has an effect on carbon metabolism.


2007 ◽  
Vol 189 (7) ◽  
pp. 2854-2862 ◽  
Author(s):  
Patricia C. Dos Santos ◽  
Deborah C. Johnson ◽  
Brook E. Ragle ◽  
Mihaela-Carmen Unciuleac ◽  
Dennis R. Dean

ABSTRACT The nitrogen-fixing organism Azotobacter vinelandii contains at least two systems that catalyze formation of [Fe-S] clusters. One of these systems is encoded by nif genes, whose products supply [Fe-S] clusters required for maturation of nitrogenase. The other system is encoded by isc genes, whose products are required for maturation of [Fe-S] proteins that participate in general metabolic processes. The two systems are similar in that they include an enzyme for the mobilization of sulfur (NifS or IscS) and an assembly scaffold (NifU or IscU) upon which [Fe-S] clusters are formed. Normal cellular levels of the Nif system, which supplies [Fe-S] clusters for the maturation of nitrogenase, cannot also supply [Fe-S] clusters for the maturation of other cellular [Fe-S] proteins. Conversely, when produced at the normal physiological levels, the Isc system cannot supply [Fe-S] clusters for the maturation of nitrogenase. In the present work we found that such target specificity for IscU can be overcome by elevated production of NifU. We also found that NifU, when expressed at normal levels, is able to partially replace the function of IscU if cells are cultured under low-oxygen-availability conditions. In contrast to the situation with IscU, we could not establish conditions in which the function of IscS could be replaced by NifS. We also found that elevated expression of the Isc components, as a result of deletion of the regulatory iscR gene, improved the capacity for nitrogen-fixing growth of strains deficient in either NifU or NifS.


Sign in / Sign up

Export Citation Format

Share Document