scholarly journals Filling the Gap: A streamlined approach for monitoring expression and purification of membrane proteins with a periplasmic C‐terminus via GFP fluorescence

2009 ◽  
Vol 23 (S1) ◽  
Author(s):  
Jennifer M Hsieh ◽  
Gabriel C Mercado ◽  
Ha‐Quyen Bui ◽  
Jeff Abramson
2021 ◽  
Vol 28 ◽  
Author(s):  
Chen-Yan china Zhang ◽  
Shi-Qi Zhao ◽  
Shi-Long Zhang ◽  
Li-Heng Luo ◽  
Ding-Chang Liu ◽  
...  

: Membrane proteins are crucial for biological processes, and many of them are important to drug targets. Understanding the three-dimensional structures of membrane proteins are essential to evaluate their bio function and drug design. High-purity membrane proteins are important for structural determination. Membrane proteins have low yields and are difficult to purify because they tend to aggregate. We summarized membrane protein expression systems, vectors, tags, and detergents, which have deposited in the Protein Data Bank (PDB) in recent four-and-a-half years. Escherichia coli is the most expression system for membrane proteins, and HEK293 cells are the most commonly cell lines for human membrane protein expression. The most frequently vectors are pFastBac1 for alpha-helical membrane proteins, pET28a for beta-barrel membrane proteins, and pTRC99a for monotopic membrane proteins. The most used tag for membrane proteins is the 6×His-tag. FLAG commonly used for alpha-helical membrane proteins, Strep and GST for beta-barrel and monotopic membrane proteins, respectively. The detergents and their concentrations used for alpha-helical, beta-barrel, and monotopic membrane proteins are different, and DDM is commonly used for membrane protein purification. It can guide the expression and purification of membrane proteins, thus contributing to their structure and bio function studying.


2009 ◽  
Vol 191 (8) ◽  
pp. 2815-2825 ◽  
Author(s):  
Mark D. Gonzalez ◽  
Jon Beckwith

ABSTRACT Cell division in bacteria requires the coordinated action of a set of proteins, the divisome, for proper constriction of the cell envelope. Multiple protein-protein interactions are required for assembly of a stable divisome. Within the Escherichia coli divisome is a conserved subcomplex of inner membrane proteins, the FtsB/FtsL/FtsQ complex, which is necessary for linking the upstream division proteins, which are predominantly cytoplasmic, with the downstream division proteins, which are predominantly periplasmic. FtsB and FtsL are small bitopic membrane proteins with predicted coiled-coil motifs, which themselves form a stable subcomplex that can recruit downstream division proteins independently of FtsQ; however, the details of how FtsB and FtsL interact together and with other proteins remain to be characterized. Despite the small size of FtsB, we identified separate interaction domains of FtsB that are required for interaction with FtsL and FtsQ. The N-terminal half of FtsB is necessary for interaction with FtsL and sufficient, when in complex with FtsL, for recruitment of downstream division proteins, while a portion of the FtsB C terminus is necessary for interaction with FtsQ. These properties of FtsB support the proposal that its main function is as part of a molecular scaffold to allow for proper formation of the divisome.


2002 ◽  
Vol 3 (6) ◽  
pp. 511-517 ◽  
Author(s):  
Isabelle Mus-Veteau

Membrane proteins (MPs) are responsible for the interface between the exterior and the interior of the cell. These proteins are implicated in numerous diseases, such as cancer, cystic fibrosis, epilepsy, hyperinsulinism, heart failure, hypertension and Alzheimer's disease. However, studies on these disorders are hampered by a lack of structural information about the proteins involved. Structural analysis requires large quantities of pure and active proteins. The majority of medically and pharmaceutically relevant MPs are present in tissues at very low concentration, which makes heterologous expression in large-scale production-adapted cells a prerequisite for structural studies. Obtaining mammalian MP structural data depends on the development of methods that allow the production of large quantities of MPs. This review focuses on the different heterologous expression systems, and the purification strategies, used to produce large amounts of pure mammalian MPs for structural proteomics.


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Markus Peschke ◽  
Mélanie Le Goff ◽  
Gregory M. Koningstein ◽  
Norbert O. Vischer ◽  
Abbi Abdel-Rehim ◽  
...  

ABSTRACT Tail-anchored membrane proteins (TAMPs) are a distinct subset of inner membrane proteins (IMPs) characterized by a single C-terminal transmembrane domain (TMD) that is responsible for both targeting and anchoring. Little is known about the routing of TAMPs in bacteria. Here, we have investigated the role of TMD hydrophobicity in tail-anchor function in Escherichia coli and its influence on the choice of targeting/insertion pathway. We created a set of synthetic, fluorescent TAMPs that vary in the hydrophobicity of their TMDs and corresponding control polypeptides that are extended at their C terminus to create regular type II IMPs. Surprisingly, we observed that TAMPs have a much lower TMD hydrophobicity threshold for efficient targeting and membrane insertion than their type II counterparts. Using strains conditional for the expression of known membrane-targeting and insertion factors, we show that TAMPs with strongly hydrophobic TMDs require the signal recognition particle (SRP) for targeting. Neither the SecYEG translocon nor YidC appears to be essential for the membrane insertion of any of the TAMPs studied. In contrast, corresponding type II IMPs with a TMD of sufficient hydrophobicity to promote membrane insertion followed an SRP- and SecYEG translocon-dependent pathway. Together, these data indicate that the capacity of a TMD to promote the biogenesis of E. coli IMPs is strongly dependent upon the polypeptide context in which it is presented. IMPORTANCE A subset of membrane proteins is targeted to and inserted into the membrane via a hydrophobic transmembrane domain (TMD) that is positioned at the very C terminus of the protein. The biogenesis of these so-called tail-anchored proteins (TAMPs) has been studied in detail in eukaryotic cells. Various partly redundant pathways were identified, the choice for which depends in part on the hydrophobicity of the TMD. Much less is known about bacterial TAMPs. The significance of our research is in identifying the role of TMD hydrophobicity in the routing of E. coli TAMPs. Our data suggest that both the nature of the TMD and its role in routing can be very different for TAMPs versus “regular” membrane proteins. Elucidating these position-specific effects of TMDs will increase our understanding of how prokaryotic cells face the challenge of producing a wide variety of membrane proteins.


2009 ◽  
Vol 419 (2) ◽  
pp. 301-308 ◽  
Author(s):  
Ayelén González Montoro ◽  
Rodrigo Quiroga ◽  
Hugo J. F. Maccioni ◽  
Javier Valdez Taubas

S-acylation (commonly known as palmitoylation) is a widespread post-translational modification that consists of the addition of a lipid molecule to cysteine residues of a protein through a thioester bond. This modification is predominantly mediated by a family of proteins referred to as PATs (palmitoyltransferases). Most PATs are polytopic membrane proteins, with four to six transmembrane domains, a conserved DHHC motif and variable C-and N-terminal regions, that are probably responsible for conferring localization and substrate specificity. There is very little additional information on the structure–function relationship of PATs. Swf1 and Pfa3 are yeast members of the DHHC family of proteins. Swf1 is responsible for the S-acylation of several transmembrane SNAREs (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptors) and other integral membrane proteins. Pfa3 is required for the palmitoylation of Vac8, a protein involved in vacuolar fusion. In the present study we describe a novel 16-amino-acid motif present at the cytosolic C-terminus of PATs, that is required for Swf1 and Pfa3 function in vivo. Within this motif, we have identified a single residue in Swf1, Tyr323, as essential for function, and this is correlated with lack of palmitoylation of Tlg1, a SNARE that is a substrate of Swf1. The equivalent mutation in Pfa3 also affects its function. These mutations are the first phenotype-affecting mutations uncovered that do not lie within the DHHC domain, for these or any other PATs. The motif is conserved in 70% of PATs from all eukaryotic organisms analysed, and may have once been present in all PATs. We have named this motif PaCCT (‘Palmitoyltransferase Conserved C-Terminus’).


1996 ◽  
Vol 7 (5) ◽  
pp. 693-701 ◽  
Author(s):  
R J Barnard ◽  
A Morgan ◽  
R D Burgoyne

The binding of alpha-SNAP to the membrane proteins syntaxin, SNAP-25, and synaptobrevin leads to the recruitment of the N-ethylmaleimide-sensitive fusion protein (NSF). ATP hydrolysis by NSF has been suggested to drive conformational changes in one or more of these membrane proteins that are essential for regulated exocytosis. Functional evidence for a role of alpha-SNAP in exocytosis in adrenal chromaffin cells comes from the ability of this protein to stimulate Ca(2+)-dependent exocytosis in digitonin-permeabilized cells. Here we examine the effect of a series of deletion mutants of alpha-SNAP on exocytosis, and on the ability of alpha-SNAP to interact with NSF, to define essential domains involved in protein-protein interactions in exocytosis. Deletion of extreme N- or C-terminal regions of alpha-SNAP produced proteins unable to bind to syntaxin or to stimulate exocytosis, suggesting that these domains participate in essential interactions. Deletion of C-terminal residues abolished the ability of alpha-SNAP to bind NSF. In contrast, deletion of up to 120 N-terminal residues did not prevent the binding of NSF to immobilized alpha-SNAP and such mutants were also able to stimulate the ATPase activity of NSF. These results suggest that the C-terminus, but not the N-terminus, of alpha-SNAP is crucial for interactions with NSF. The involvement of the C-terminus of alpha-SNAP, which contains a predicted coiled-coil domain, in the binding of both syntaxin and NSF would place the latter two proteins in proximity in a ternary complex whereupon the energy derived from ATP hydrolysis by NSF could induce a conformational change in syntaxin required for exocytosis to proceed.


Microbiology ◽  
2010 ◽  
Vol 156 (9) ◽  
pp. 2587-2596 ◽  
Author(s):  
Jan Tommassen

The cell envelope of Gram-negative bacteria consists of two membranes separated by the periplasm. In contrast with most integral membrane proteins, which span the membrane in the form of hydrophobic α-helices, integral outer-membrane proteins (OMPs) form β-barrels. Similar β-barrel proteins are found in the outer membranes of mitochondria and chloroplasts, probably reflecting the endosymbiont origin of these eukaryotic cell organelles. How these β-barrel proteins are assembled into the outer membrane has remained enigmatic for a long time. In recent years, much progress has been reached in this field by the identification of the components of the OMP assembly machinery. The central component of this machinery, called Omp85 or BamA, is an essential and highly conserved bacterial protein that recognizes a signature sequence at the C terminus of its substrate OMPs. A homologue of this protein is also found in mitochondria, where it is required for the assembly of β-barrel proteins into the outer membrane as well. Although accessory components of the machineries are different between bacteria and mitochondria, a mitochondrial β-barrel OMP can be assembled into the bacterial outer membrane and, vice versa, bacterial OMPs expressed in yeast are assembled into the mitochondrial outer membrane. These observations indicate that the basic mechanism of OMP assembly is evolutionarily highly conserved.


Sign in / Sign up

Export Citation Format

Share Document