scholarly journals Casein Kinase 1 Alpha (CK1a) Promotes Nuclear Entry of PERIOD and Represses CLOCK transcriptional activity in the Drosophila melanogaster Circadian Clock

2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Vu Lam ◽  
Ying Li ◽  
Katherine Murphy ◽  
Rosanna Kwok ◽  
Joanna Chiu
RSC Advances ◽  
2019 ◽  
Vol 9 (56) ◽  
pp. 32781-32781
Author(s):  
Ye Cao ◽  
Jiajia Zheng ◽  
Chentao Lv

Correction for ‘miR-199a-3p knockdown inhibits dedifferentiated liposarcoma (DDLPS) cell viability and enhances apoptosis through targeting casein kinase-1 alpha (CK1α)’ by Ye Cao et al., RSC Adv., 2019, 9, 22755–22763.


2005 ◽  
Vol 25 (15) ◽  
pp. 6509-6520 ◽  
Author(s):  
Lihong Chen ◽  
Changgong Li ◽  
Yu Pan ◽  
Jiandong Chen

ABSTRACT MDMX is a homolog of MDM2 that is critical for regulating p53 function during mouse development. MDMX degradation is regulated by MDM2-mediated ubiquitination. Whether there are other mechanisms of MDMX regulation is largely unknown. We found that MDMX binds to the casein kinase 1 alpha isoform (CK1α) and is phosphorylated by CK1α. Expression of CK1α stimulates the ability of MDMX to bind to p53 and inhibit p53 transcriptional function. Regulation of MDMX-p53 interaction requires CK1α binding to the central region of MDMX and phosphorylation of MDMX on serine 289. Inhibition of CK1α expression by isoform-specific small interfering RNA (siRNA) activates p53 and further enhances p53 activity after ionizing irradiation. CK1α siRNA also cooperates with DNA damage to induce apoptosis. These results suggest that CK1α is a functionally relevant MDMX-binding protein and plays an important role in regulating p53 activity in the absence or presence of stress.


Author(s):  
Morvarid Siri ◽  
Hamid Behrouj ◽  
Sanaz Dastghaib ◽  
Mozhdeh Zamani ◽  
Wirginia Likus ◽  
...  

AbstractAdjuvant chemotherapy with 5-fluorouracil (5-FU) does not improve survival of patients suffering from a form of colorectal cancer (CRC) characterized by high level of microsatellite instability (MSI-H). Given the importance of autophagy and multi-drug-resistant (MDR) proteins in chemotherapy resistance, as well as the role of casein kinase 1-alpha (CK1α) in the regulation of autophagy, we tested the combined effect of 5-FU and CK1α inhibitor (D4476) on HCT116 cells as a model of MSI-H colorectal cancer. To achieve this goal, the gene expression of Beclin1 and MDR genes, ABCG2 and ABCC3 were analyzed using quantitative real-time polymerase chain reaction. We used immunoblotting to measure autophagy flux (LC3, p62) and flow cytometry to detect apoptosis. Our findings showed that combination treatment with 5-FU and D4476 inhibited autophagy flux. Moreover, 5-FU and D4476 combination therapy induced G2, S and G1 phase arrests and it depleted mRNA of both cell proliferation-related genes and MDR-related genes (ABCG2, cyclin D1 and c-myc). Hence, our data indicates that targeting of CK1α may increase the sensitivity of HCT116 cells to 5-FU. To our knowledge, this is the first description of sensitization of CRC cells to 5-FU chemotherapy by CK1α inhibitor. Graphic abstract


1996 ◽  
Vol 109 (7) ◽  
pp. 1847-1856 ◽  
Author(s):  
J.A. Santos ◽  
E. Logarinho ◽  
C. Tapia ◽  
C.C. Allende ◽  
J.E. Allende ◽  
...  

We report the molecular cloning and characterisation of the first CK1(casein kinase) gene of Drosophila melanogaster (dmCK1). The protein sequence (DMCK1) shares significant homology with other mammalian CK1 protein kinases of the alpha sub-class. The dmCK1 gene is expressed only in adult females and during early embryonic development as a single transcript. Western blot analysis of total protein extracts of different stages of development show that the gene product is likewise present during early embryogenesis and in adult females. Kinase activity studies show that DMCK1 is active when in vitro translated but inactive when immunoprecipitated from total early embryo extracts. However, after dephosphorylation treatment the immunoprecipitates show high kinase activity. More significantly, DMCK1 kinase activity present in the immunoprecipitates can be specifically activated by gamma-irradiation of early embryos. Also, when DMCK1 is immunoprecipitated after irradiation it appears to undergo phosphorylation. Immunolocalization of DMCK1 in early embryos shows that the protein is predominantly cytoplasmic but after irradiation there is a significant relocalization to the interphase nucleus. The results suggest a possible requirement of the Drosophila CK1 alpha for mechanisms associated with DNA repair during early embryogenesis.


2009 ◽  
Vol 29 (14) ◽  
pp. 3853-3866 ◽  
Author(s):  
Jean-Pierre Etchegaray ◽  
Kazuhiko K. Machida ◽  
Elizabeth Noton ◽  
Cara M. Constance ◽  
Robert Dallmann ◽  
...  

ABSTRACT Both casein kinase 1 delta (CK1δ) and epsilon (CK1ε) phosphorylate core clock proteins of the mammalian circadian oscillator. To assess the roles of CK1δ and CK1ε in the circadian clock mechanism, we generated mice in which the genes encoding these proteins (Csnk1d and Csnk1e, respectively) could be disrupted using the Cre-loxP system. Cre-mediated excision of the floxed exon 2 from Csnk1d led to in-frame splicing and production of a deletion mutant protein (CK1δΔ2). This product is nonfunctional. Mice homozygous for the allele lacking exon 2 die in the perinatal period, so we generated mice with liver-specific disruption of CK1δ. In livers from these mice, daytime levels of nuclear PER proteins, and PER-CRY-CLOCK complexes were elevated. In vitro, the half-life of PER2 was increased by ∼20%, and the period of PER2::luciferase bioluminescence rhythms was 2 h longer than in controls. Fibroblast cultures from CK1δ-deficient embryos also had long-period rhythms. In contrast, disruption of the gene encoding CK1ε did not alter these circadian endpoints. These results reveal important functional differences between CK1δ and CK1ε: CK1δ plays an unexpectedly important role in maintaining the 24-h circadian cycle length.


Author(s):  
Hamid Behrouj ◽  
Atefeh Seghatoleslam ◽  
Pooneh Mokarram ◽  
Saeid Ghavami

The Wnt/β-catenin pathway, which interferes with cell proliferation, differentiation, and autophagy, is commonly dysregulated in colorectal cancer (CRC). Mutation of the RAS oncogene is the most prevalent genetic alteration in CRC and has been linked to activation of protein kinase B (AKT) signaling. Phosphorylation of β-catenin at Ser 552 by AKT contributes to β-catenin stability, transcriptional activity, and increase of cell proliferation. Casein kinase 1 alpha (CK1α) is an enzyme that simultaneously regulates Wnt/β-catenin and AKT. The link of the AKT and Wnt pathway to autophagy in RAS-mutated CRC cells has not well identified. Therefore, we investigated how pharmacological CK1α inhibition (D4476) is involved in regulation of autophagy, Wnt/β-catenin, and AKT pathways in RAS-mutated CRC cell lines. qRT-PCR and immunoblotting experiments revealed that phospho-AKT (S473) and phospho-β-catenin (S552) are constitutively increased in RAS-mutated CRC cell lines, in parallel with augmented CK1α expression. The results also showed that D4476 significantly reduced the AKT/phospho-β-catenin (S552) axis concomitantly with autophagy flux inhibition in RAS-mutated CRC cells. Furthermore, D4476 significantly induced apoptosis in RAS-mutated CRC cells. In conclusion, our results indicate that CK1α inhibition reduces autophagy flux and promotes apoptosis by interfering with the AKT/phospho-β-catenin (S552) axis in RAS-mutated CRC cells.


RSC Advances ◽  
2019 ◽  
Vol 9 (39) ◽  
pp. 22755-22763
Author(s):  
Ye Cao ◽  
Jiajia Zheng ◽  
Chentao Lv

Dedifferentiated liposarcoma (DDLPS) is an aggressive tumor with high mortality.


Sign in / Sign up

Export Citation Format

Share Document