scholarly journals Autophagy in Proximal Tubules Prevents Or Promotes Tubular Damage Depending on The Type of Acute Kidney Injury Model

2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Sagar Bhayana ◽  
Arpita Baisantry ◽  
Song Rong ◽  
Hermann Haller ◽  
Annette Melk ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maki Murakoshi ◽  
Tomohito Gohda ◽  
Eri Adachi ◽  
Saki Ichikawa ◽  
Shinji Hagiwara ◽  
...  

AbstractProgranulin (PGRN) has been reported to bind tumor necrosis factor (TNF) receptor and to inhibit TNFα signaling. We evaluated the effect of augmentation of TNFα signaling by PGRN deficiency on the progression of kidney injury. Eight-week-old PGRN knockout (KO) and wild-type (WT) mice were fed a standard diet or high-fat diet (HFD) for 12 weeks. Albuminuria, markers of tubular damage, and renal mRNA levels of inflammatory cytokines were higher in HFD-fed KO (KO-HFD) mice than in HFD-fed WT (WT-HFD) mice. Body weight, vacuolization in proximal tubules, and systemic and adipose tissue inflammatory markers were lower in the KO-HFD mice than in the WT-HFD mice. The renal megalin expression was lower in the KO mice than in the WT mice regardless of the diet type. The megalin expression was also reduced in mouse proximal tubule epithelial cells stimulated with TNFα and in those with PGRN knockdown by small interfering RNA in vitro. PGRN deficiency was associated with both exacerbated renal inflammation and decreased systemic inflammation, including that in the adipose tissue of mice with HFD-induced obesity. Improved tubular vacuolization in the KO-HFD mice might partially be explained by the decreased expression of megalin in proximal tubules.


2018 ◽  
Vol 48 (11) ◽  
pp. 1410-1411
Author(s):  
Kyung Min Kim ◽  
Soon Kil Kwon ◽  
Hye‐Young Kim ◽  
Sun Moon Kim ◽  
Do Hee Kim ◽  
...  

2020 ◽  
Vol 92 (7) ◽  
pp. 63-69
Author(s):  
I. G. Rekhtina ◽  
E. V. Kazarina ◽  
E. S. Stolyarevich ◽  
A. M. Kovrigina ◽  
V. N. Dvirnyk ◽  
...  

Aim.Reveal morphological and immunohistochemical predictors of reversibility of dialysis-dependent acute kidney injury (AKI) in patients with myeloma cast nephropathy (MCN) based on the study of kidney biopsy. Materials and methods.Renal pathological findings were studied in 36 patients with MCN and dialysis-dependent stage 3 AKI (AKIN, 2012). The study of biopsy samples was performed by a semi-quantitative and quantitative analysis using computer morphometry. The expression of E-cadherin, vimentin and-smooth muscle actin was determined immunohistochemically in the tubular cells and interstitium. Induction therapy for 26 patients was carried out to bortezomib-based programs; in 10 patients other schemes were used. A comparative analysis of morphological changes in nephrobiopathy depending on the renal response was performed in patients with achieved hematologic remission. Results.Improved renal function was observed only in patients with hematologic response to therapy. There were no differences in the number of sclerotic glomeruli, protein casts, the area of inflammatory interstitial infiltration, and the degree of acute tubular damage in patients with and without renal response. In patients with renal response compared with patients without improving renal function, the area of interstitial fibrosis was less (24.9% and 45.9%, respectively;p=0.001), and the area of E-cadherin expression was larger (15.9% and 7.1%, respectively;p=0.006). Interstitial fibrosis of 40% or more and/or the area of expression of E-cadherin less than 10% of the area of tubulo-interstitium have an unfavorable prognostic value in achieving a renal response in MCN. Conclusion.If the interstitial fibrosis area is 40% or more and the expression area of E-cadherin is less than 10%, the probability of the absence of a renal response is 93.3% (OR=24.5) even when a hematological response to induction therapy is achieved. The number of protein casts, the prevalence of acute tubular damage and inflammatory interstitial infiltration have not prognostic value.


Biology Open ◽  
2021 ◽  
Author(s):  
Taro Miyagawa ◽  
Yasunori Iwata ◽  
Megumi Oshima ◽  
Hisayuki Ogura ◽  
Koichi Sato ◽  
...  

The full-length receptor for advanced glycation end products (RAGE) is a multiligand pattern recognition receptor. High-mobility group box 1 (HMGB1) is a RAGE ligand of damage-associated molecular patterns that elicits inflammatory reactions. The shedded isoform of RAGE and endogenous secretory RAGE (esRAGE), a splice variant, are soluble isoforms (sRAGE) that act as organ-protective decoys. However, the pathophysiologic roles of RAGE/sRAGE in acute kidney injury (AKI) remain unclear. We found that AKI was more severe, with enhanced renal tubular damage, macrophage infiltration, and fibrosis, in mice lacking both RAGE and sRAGE than in wild-type control mice. Using murine tubular epithelial cells (TECs), we demonstrated that hypoxia upregulated messenger RNA (mRNA) expression of HMGB1 and tumor necrosis factor α (TNF-α), whereas RAGE and esRAGE expressions were paradoxically decreased. Moreover, the addition of recombinant sRAGE canceled hypoxia-induced inflammation and promoted cell viability in cultured TECs. sRAGE administration prevented renal tubular damage in models of ischemia/reperfusion-induced AKI and of anti-glomerular basement membrane (anti-GBM) glomerulonephritis. These results suggest that sRAGE is a novel therapeutic option for AKI.


2020 ◽  
Vol 318 (1) ◽  
pp. F209-F215 ◽  
Author(s):  
Jun Zhou ◽  
Changlong An ◽  
Xiaogao Jin ◽  
Zhaoyong Hu ◽  
Robert L. Safirstein ◽  
...  

Cisplatin can cause acute kidney injury (AKI), but the molecular mechanisms are not well understood. The objective of the present study was to examine the role of transforming growth factor-β-activated kinase-1 (TAK1) in the pathogenesis of cisplatin-induced AKI. Wild-type mice and proximal tubule TAK1-deficient mice were treated with vehicle or cisplatin. Compared with wild-type control mice, proximal tubule TAK1-deficient mice had less severe kidney dysfunction, tubular damage, and apoptosis after cisplatin–induced AKI. Furthermore, conditional disruption of TAK1 in proximal tubular epithelial cells reduced caspase-3 activation, proinflammatory molecule expression, and JNK phosphorylation in the kidney in cisplatin-induced AKI. Taken together, cisplatin activates TAK1-JNK signaling pathway to promote tubular epithelial cell apoptosis and inflammation in cisplatin-induced AKI. Targeting TAK1 could be a novel therapeutic strategy against cisplatin-induced AKI.


2020 ◽  
Vol 128 (4) ◽  
pp. 715-728 ◽  
Author(s):  
Christopher L. Chapman ◽  
Blair D. Johnson ◽  
Nicole T. Vargas ◽  
David Hostler ◽  
Mark D. Parker ◽  
...  

Occupational heat stress increases the risk of acute kidney injury (AKI) and kidney disease. This study tested the hypothesis that attenuating the magnitude of hyperthermia (i.e., increase in core temperature) and/or dehydration during prolonged physical work in the heat attenuates increases in AKI biomarkers. Thirteen healthy adults (3 women, 23 ± 2 yr) exercised for 2 h in a 39.7 ± 0.6°C, 32 ± 3% relative-humidity environmental chamber. In four trials, subjects received water to remain euhydrated ( Water), continuous upper-body cooling ( Cooling), a combination of both ( Water + Cooling), or no intervention ( Control). The magnitude of hyperthermia (increased core temperature of 1.9 ± 0.3°C; P < 0.01) and dehydration (percent loss of body mass of −2.4 ± 0.5%; P < 0.01) were greatest in the Control group. There were greater increases in the urinary biomarkers of AKI in the Control trial: albumin (increase of 13 ± 11 μg/mL; P ≤ 0.05 compared with other trials), neutrophil gelatinase-associated lipocalin (NGAL) (increase of 16 ± 14 ng/dL, P ≤ 0.05 compared with Cooling and Water + Cooling groups), and insulin-like growth factor-binding protein 7 (IGFBP7) (increase of 227 ± 190 ng/mL; P ≤ 0.05 compared with other trials). Increases in IGFBP7 in the Control trial persisted after correcting for urine production/concentration. There were no differences in the AKI biomarker tissue inhibitor of metalloproteinase 2 (TIMP-2) between trials ( P ≥ 0.11). Our findings indicate that the risk of AKI is highest with greater magnitudes of hyperthermia and dehydration during physical work in the heat. Additionally, the differential findings between IGFBP7 (preferentially secreted in proximal tubules) and TIMP-2 (distal tubules) suggest the proximal tubules as the location of potential renal injury. NEW & NOTEWORTHY We demonstrate that the risk for acute kidney injury (AKI) is higher in humans with greater magnitudes of hyperthermia and dehydration during physical work in the heat and that alleviating the hyperthermia and/or limiting dehydration equally reduce the risk of AKI. The biomarker panel employed in this study suggests the proximal tubules as the location of potential renal injury.


2019 ◽  
Vol 316 (6) ◽  
pp. F1273-F1281 ◽  
Author(s):  
Shi-Jing Mo ◽  
Wei Zhang ◽  
Jing-Quan Liu ◽  
Min-Hua Chen ◽  
Liang Xu ◽  
...  

Acute kidney injury (AKI) initiated by sepsis remains a thorny problem despite recent advancements in its clinical management. Having been found to be activated during AKI, fibroblast growth factor-inducible molecule 14 (Fn14) may be a potential therapeutic target because of its involvement in the molecular basis of injury. Here, we report that LPS induces apoptosis of mouse cortical tubule cells mediated by Fn14, for which simultaneous Toll-like receptor (TLR)4 activation is required. Mechanistically, TLR4 activation by lipopolysaccharide, through disassociating E3 ligase SCFFbxw7α from Fn14, dismantles Lys48-linked polyubiquitination of Fn14 and stabilizes it. Pharmacological deactivation of Fn14 with monoclonal antibody ITEM-2 provides effective protection against lethal sepsis and AKI in mice. Our study underscores an adaptive mechanism whereby TLR4 regulates SCFFbxw7α-dependent Fn14 stabilization during inflammatory tubular damage and further supports investigation of targeting Fn14 in clinical trials of patients with septic AKI.


Sign in / Sign up

Export Citation Format

Share Document