scholarly journals High‐intensity exercise training enhances mitochondrial oxidative phosphorylation efficiency in a temperature‐dependent manner in human skeletal muscle: implications for exercise performance

2019 ◽  
Vol 33 (8) ◽  
pp. 8976-8989 ◽  
Author(s):  
Matteo Fiorenza ◽  
Anders K. Lemminger ◽  
Mathias Marker ◽  
Kasper Eibye ◽  
F. Marcello Iaia ◽  
...  
2019 ◽  
Vol 44 (12) ◽  
pp. 1391-1394
Author(s):  
Martin J. MacInnis ◽  
Lauren E. Skelly ◽  
F. Elizabeth Godkin ◽  
Brian J. Martin ◽  
Thomas R. Tripp ◽  
...  

The legs of 9 men (age 21 ± 2 years, 45 ± 4 mL/(kg·min)) were randomly assigned to complete 6 sessions of high-intensity exercise training, involving either one or four 5-min bouts of counterweighted, single-leg cycling. Needle biopsies from vastus lateralis revealed that citrate synthase maximal activity increased after training in the 4-bout group (p = 0.035) but not the 1-bout group (p = 0.10), with a significant difference between groups post-training (13%, p = 0.021). Novelty Short-term training using brief intense exercise requires multiple bouts per session to increase mitochondrial content in human skeletal muscle.


1999 ◽  
Vol 276 (2) ◽  
pp. E255-E261 ◽  
Author(s):  
Henriette Pilegaard ◽  
Kristian Domino ◽  
Thomas Noland ◽  
Carsten Juel ◽  
Ylva Hellsten ◽  
...  

The present study examined the effect of high-intensity exercise training on muscle sarcolemmal lactate/H+ transport and the monocarboxylate transporters (MCT1 and MCT4) as well as lactate and H+ release during intense exercise in humans. One-legged knee-extensor exercise training was performed for 8 wk, and biopsies were obtained from untrained and trained vastus lateralis muscle. The rate of lactate/H+ transport determined in sarcolemmal giant vesicles was 12% higher ( P < 0.05) in the trained than in untrained muscle ( n = 7). The content of MCT1 and MCT4 protein was also higher (76 and 32%, respectively; n = 4) in trained muscle. Release of lactate and H+ from the quadriceps muscle at the end of intense exhaustive knee-extensor exercise was similar in the trained and untrained leg, although the estimated muscle intracellular-to-interstitial gradients of lactate and H+ were lower ( P < 0.05) in the trained than in the untrained muscle. The present data show that intense exercise training can increase lactate/H+transport capacity in human skeletal muscle as well as improve the ability of the muscle to release lactate and H+ during contractions.


2018 ◽  
Vol 315 (5) ◽  
pp. E1034-E1045 ◽  
Author(s):  
Kristoffer Svensson ◽  
Jessica R. Dent ◽  
Shahriar Tahvilian ◽  
Vitor F. Martins ◽  
Abha Sathe ◽  
...  

The pyruvate dehydrogenase complex (PDC) converts pyruvate to acetyl-CoA and is an important control point for carbohydrate (CHO) oxidation. However, the importance of the PDC and CHO oxidation to muscle metabolism and exercise performance, particularly during prolonged or high-intensity exercise, has not been fully defined especially in mature skeletal muscle. To this end, we determined whether skeletal muscle-specific loss of pyruvate dehydrogenase alpha 1 ( Pdha1), which is a critical subunit of the PDC, impacts resting energy metabolism, exercise performance, or metabolic adaptation to high-fat diet (HFD) feeding. For this, we generated a tamoxifen (TMX)-inducible Pdha1 knockout (PDHmKO) mouse, in which PDC activity is temporally and specifically ablated in adult skeletal muscle. We assessed energy expenditure, ex vivo muscle contractile performance, and endurance exercise capacity in PDHmKO mice and wild-type (WT) littermates. Additionally, we studied glucose homeostasis and insulin sensitivity in muscle after 12 wk of HFD feeding. TMX administration largely ablated PDHα in skeletal muscle of adult PDHmKO mice but did not impact energy expenditure, muscle contractile function, or low-intensity exercise performance. Additionally, there were no differences in muscle insulin sensitivity or body composition in PDHmKO mice fed a control or HFD, as compared with WT mice. However, exercise capacity during high-intensity exercise was severely impaired in PDHmKO mice, in parallel with a large increase in plasma lactate concentration. In conclusion, although skeletal muscle PDC is not a major contributor to resting energy expenditure or long-duration, low-intensity exercise performance, it is necessary for optimal performance during high-intensity exercise.


2018 ◽  
Vol 40 (01) ◽  
pp. 16-22 ◽  
Author(s):  
Alberto Pérez-López ◽  
Marcos Martin-Rincon ◽  
Alfredo Santana ◽  
Ismael Perez-Suarez ◽  
Cecilia Dorado ◽  
...  

AbstractInterleukin (IL)-15 stimulates mitochondrial biogenesis, fat oxidation, glucose uptake and myogenesis in skeletal muscle. However, the mechanisms by which exercise triggers IL-15 expression remain to be elucidated in humans. This study aimed at determining whether high-intensity exercise and exercise-induced RONS stimulate IL-15/IL-15Rα expression and its signaling pathway (STAT3) in human skeletal muscle. Nine volunteers performed a 30-s Wingate test in normoxia and hypoxia (PIO2=75 mmHg), 2 h after placebo or antioxidant administration (α-lipoic acid, vitamin C and E) in a randomized double-blind design. Blood samples and muscle biopsies (vastus lateralis) were obtained before, immediately after, and 30 and 120 min post-exercise. Sprint exercise upregulated skeletal muscle IL-15 protein expression (ANOVA, P=0.05), an effect accentuated by antioxidant administration in hypoxia (ANOVA, P=0.022). In antioxidant conditions, the increased IL-15 expression at 120 min post-exercise (33%; P=0.017) was associated with the oxygen deficit caused by the sprint (r=–0.54; P=0.020); while, IL-15 and Tyr705-STAT3 AUCs were also related (r=0.50; P=0.036). Antioxidant administration promotes IL-15 protein expression in human skeletal muscle after sprint exercise, particularly in severe acute hypoxia. Therefore, during intense muscle contraction, a reduced PO2 and glycolytic rate, and possibly, an attenuated RONS generation may facilitate IL-15 production, accompanied by STAT3 activation, in a process that does not require AMPK phosphorylation.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
I Urbaneck ◽  
F Lorenz ◽  
I Materzok ◽  
L Maletzki ◽  
M Pietzner ◽  
...  

Abstract Background Exercise training (ET) and statin treatment both alter skeletal muscle function. Purpose We investigated the effects of a combined exercise and statin use on skeletal muscle mitochondrial oxidative phosphorylation (OxPhos) and metabolic alterations in obese rats. Methods Eight-week-old male Wistar rats were used. A total of 14 animals received standard chow, while 46 rats were fed a high-fat diet (HFD) for 20 weeks. After 8 weeks, the rats were randomized into 6 groups: sedentary (n=8), ET (n=6), sedentary with HFD (n=11), ET with HFD (n=11), statin with HFD (n=13) and ET with HFD and statins (n=11). Simvastatin (10mg/d/kg) was added to the drinking water. ET was performed for 12 weeks, 5 days/week for 1 h/day at 18 m/min in a motorized running wheel. OxPhos was assessed by complex-specific antibodies and targeted metabolomics using the Biocrates p180 kit. All experiments were done on frozen samples of the M. gastrocnemicus. An ANOVA with fixed effects for diet, exercise, statin treatment and statin-exercise interaction was used to identify significantly different metabolites. Results Statin use was associated with significantly lower cholesterol levels, but did not affect exercise duration and intensity compared to none-use. In sedentary animals, HFD increased OxPhos complex II (succinate dehydrogenase), complex IV (cytochrome-c-oxidase) and V (ATP synthase) while statin treatment diminished this increase in all complexes. HFD increased complex IV independent of statin treatment but had no effect on complex II and V in ET rats. Complex IV was increased due to ET only in HFD fed rats compared to rats on normal chow but decreased in contrast to sedentary animals on a HFD. With regards to metabolomics, we found 57 metabolites which were influenced by HFD while no metabolites were identified with a significant effect for ET. A significant statin-exercise interaction was found for three lysophosphatidylcholines (lysoPC a C26.0, lysoPC a C26.1, lysoPC a C24.0), one phosphatidylcholine (PC aa C42.6) and one sphingomyelin (SM C16.1). HFD decreased the concentration of all mentioned metabolites compared to standard chow fed animals. Likewise, ET increased the concentration of metabolites compared to sedentary animals on HFD. Statin treatment led to an increase, while statin in combination with ET did not rescue this effect. Conclusion HFD induced severely impaired skeletal muscle OxPhos independent of ET and statin treatment. Our findings suggest a limiting rate of NADH production in the tricarboxylic acid cycle as a potential mechanism. However, ET prevented the increase in cytochrome-c-oxidation while statins blocked the HFD induced increase in ATP synthase. Our metabolomics results imply that future research should consider the lipotoxic effects of a HFD when assessing skeletal muscle alterations due to ET or statins. Of particular interest could be the 5 metabolites that have been shown to be impacted by a statin-exercise interaction.


Sign in / Sign up

Export Citation Format

Share Document