331 Effect of high-intensity exercise training on MCT1 and MCT4 content in human skeletal muscle

2005 ◽  
Vol 8 ◽  
pp. 191
Author(s):  
D. Bishop ◽  
C. Thomas ◽  
J. Edge ◽  
J. Mercier
2019 ◽  
Vol 44 (12) ◽  
pp. 1391-1394
Author(s):  
Martin J. MacInnis ◽  
Lauren E. Skelly ◽  
F. Elizabeth Godkin ◽  
Brian J. Martin ◽  
Thomas R. Tripp ◽  
...  

The legs of 9 men (age 21 ± 2 years, 45 ± 4 mL/(kg·min)) were randomly assigned to complete 6 sessions of high-intensity exercise training, involving either one or four 5-min bouts of counterweighted, single-leg cycling. Needle biopsies from vastus lateralis revealed that citrate synthase maximal activity increased after training in the 4-bout group (p = 0.035) but not the 1-bout group (p = 0.10), with a significant difference between groups post-training (13%, p = 0.021). Novelty Short-term training using brief intense exercise requires multiple bouts per session to increase mitochondrial content in human skeletal muscle.


1999 ◽  
Vol 276 (2) ◽  
pp. E255-E261 ◽  
Author(s):  
Henriette Pilegaard ◽  
Kristian Domino ◽  
Thomas Noland ◽  
Carsten Juel ◽  
Ylva Hellsten ◽  
...  

The present study examined the effect of high-intensity exercise training on muscle sarcolemmal lactate/H+ transport and the monocarboxylate transporters (MCT1 and MCT4) as well as lactate and H+ release during intense exercise in humans. One-legged knee-extensor exercise training was performed for 8 wk, and biopsies were obtained from untrained and trained vastus lateralis muscle. The rate of lactate/H+ transport determined in sarcolemmal giant vesicles was 12% higher ( P < 0.05) in the trained than in untrained muscle ( n = 7). The content of MCT1 and MCT4 protein was also higher (76 and 32%, respectively; n = 4) in trained muscle. Release of lactate and H+ from the quadriceps muscle at the end of intense exhaustive knee-extensor exercise was similar in the trained and untrained leg, although the estimated muscle intracellular-to-interstitial gradients of lactate and H+ were lower ( P < 0.05) in the trained than in the untrained muscle. The present data show that intense exercise training can increase lactate/H+transport capacity in human skeletal muscle as well as improve the ability of the muscle to release lactate and H+ during contractions.


2018 ◽  
Vol 40 (01) ◽  
pp. 16-22 ◽  
Author(s):  
Alberto Pérez-López ◽  
Marcos Martin-Rincon ◽  
Alfredo Santana ◽  
Ismael Perez-Suarez ◽  
Cecilia Dorado ◽  
...  

AbstractInterleukin (IL)-15 stimulates mitochondrial biogenesis, fat oxidation, glucose uptake and myogenesis in skeletal muscle. However, the mechanisms by which exercise triggers IL-15 expression remain to be elucidated in humans. This study aimed at determining whether high-intensity exercise and exercise-induced RONS stimulate IL-15/IL-15Rα expression and its signaling pathway (STAT3) in human skeletal muscle. Nine volunteers performed a 30-s Wingate test in normoxia and hypoxia (PIO2=75 mmHg), 2 h after placebo or antioxidant administration (α-lipoic acid, vitamin C and E) in a randomized double-blind design. Blood samples and muscle biopsies (vastus lateralis) were obtained before, immediately after, and 30 and 120 min post-exercise. Sprint exercise upregulated skeletal muscle IL-15 protein expression (ANOVA, P=0.05), an effect accentuated by antioxidant administration in hypoxia (ANOVA, P=0.022). In antioxidant conditions, the increased IL-15 expression at 120 min post-exercise (33%; P=0.017) was associated with the oxygen deficit caused by the sprint (r=–0.54; P=0.020); while, IL-15 and Tyr705-STAT3 AUCs were also related (r=0.50; P=0.036). Antioxidant administration promotes IL-15 protein expression in human skeletal muscle after sprint exercise, particularly in severe acute hypoxia. Therefore, during intense muscle contraction, a reduced PO2 and glycolytic rate, and possibly, an attenuated RONS generation may facilitate IL-15 production, accompanied by STAT3 activation, in a process that does not require AMPK phosphorylation.


2017 ◽  
Vol 595 (11) ◽  
pp. 3345-3359 ◽  
Author(s):  
Victoria L. Wyckelsma ◽  
Itamar Levinger ◽  
Michael J. McKenna ◽  
Luke E. Formosa ◽  
Michael T. Ryan ◽  
...  

2004 ◽  
Vol 558 (1) ◽  
pp. 333-340 ◽  
Author(s):  
Regina M. Crameri ◽  
Henning Langberg ◽  
Peter Magnusson ◽  
Charlotte H. Jensen ◽  
Henrik Daa Schrøder ◽  
...  

2006 ◽  
Vol 291 (4) ◽  
pp. R1094-R1099 ◽  
Author(s):  
Jason L. Talanian ◽  
Rebecca J. Tunstall ◽  
Matthew J. Watt ◽  
Mylinh Duong ◽  
Christopher G. R. Perry ◽  
...  

Skeletal muscle hormone-sensitive lipase (HSL) activity is increased by contractions and increases in blood epinephrine (EPI) concentrations and cyclic AMP activation of the adrenergic pathway during prolonged exercise. To determine the importance of hormonal stimulation of HSL activity during the onset of moderate- and high-intensity exercise, nine men [age 24.3 ± 1.2 yr, 80.8 ± 5.0 kg, peak oxygen consumption (V̇o2 peak) 43.9 ± 3.6 ml·kg−1·min−1] cycled for 1 min at ∼65% V̇o2 peak, rested for 60 min, and cycled at ∼90% V̇o2 peak for 1 min. Skeletal muscle biopsies were taken pre- and postexercise, and arterial blood was sampled throughout exercise. Arterial EPI increased ( P < 0.05) postexercise at 65% (0.45 ± 0.10 to 0.78 ± 0.27 nM) and 90% V̇o2 peak (0.57 ± 0.34 to 1.09 ± 0.50 nM). HSL activity increased ( P < 0.05) following 1 min of exercise at 65% V̇o2 peak [1.05 ± 0.39 to 1.78 ± 0.54 mmol·min−1·kg dry muscle (dm)−1] and 90% V̇o2 peak (1.07 ± 0.24 to 1.91 ± 0.62 mmol·min−1·kg dm−1). Cyclic AMP content also increased ( P < 0.05) at both exercise intensities (65%: 1.52 ± 0.67 to 2.75 ± 1.12, 90%: 1.85 ± 0.65 to 2.64 ± 0.93 μmol/kg dm). HSL Ser660 phosphorylation (∼55% increase) and ERK1/2 phosphorylation (∼33% increase) were augmented following exercise at both intensities, whereas HSL Ser563 and Ser565 phosphorylation were not different from rest. The results indicate that increases in arterial EPI concentration during the onset of moderate- and high-intensity exercise increase cyclic AMP content, which results in the phosphorylation of HSL Ser660. This adrenergic stimulation contributes to the increase in HSL activity that occurs in human skeletal muscle in the first minute of exercise at 65% and 90% V̇o2 peak.


2014 ◽  
Vol 116 (5) ◽  
pp. 582-592 ◽  
Author(s):  
Neil A. Kelly ◽  
Matthew P. Ford ◽  
David G. Standaert ◽  
Ray L. Watts ◽  
C. Scott Bickel ◽  
...  

We conducted, in persons with Parkinson's disease (PD), a thorough assessment of neuromotor function and performance in conjunction with phenotypic analyses of skeletal muscle tissue, and further tested the adaptability of PD muscle to high-intensity exercise training. Fifteen participants with PD (Hoehn and Yahr stage 2–3) completed 16 wk of high-intensity exercise training designed to simultaneously challenge strength, power, endurance, balance, and mobility function. Skeletal muscle adaptations ( P < 0.05) to exercise training in PD included myofiber hypertrophy (type I: +14%, type II: +36%), shift to less fatigable myofiber type profile, and increased mitochondrial complex activity in both subsarcolemmal and intermyofibrillar fractions (I: +45–56%, IV: +39–54%). These adaptations were accompanied by a host of functional and clinical improvements ( P < 0.05): total body strength (+30–56%); leg power (+42%); single leg balance (+34%); sit-to-stand motor unit activation requirement (−30%); 6-min walk (+43 m), Parkinson's Disease Quality of Life Scale (PDQ-39, −7.8pts); Unified Parkinson's Disease Rating Scale (UPDRS) total (−5.7 pts) and motor (−2.7 pts); and fatigue severity (−17%). Additionally, PD subjects in the pretraining state were compared with a group of matched, non-PD controls (CON; did not exercise). A combined assessment of muscle tissue phenotype and neuromuscular function revealed a higher distribution and larger cross-sectional area of type I myofibers and greater type II myofiber size heterogeneity in PD vs. CON ( P < 0.05). In conclusion, persons with moderately advanced PD adapt to high-intensity exercise training with favorable changes in skeletal muscle at the cellular and subcellular levels that are associated with improvements in motor function, physical capacity, and fatigue perception.


Author(s):  
Alessandro M. Zagatto ◽  
David J. Bishop ◽  
Barbara Moura Antunes ◽  
Wladimir R. Beck ◽  
Elvis S. Malta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document