Halothane and Isoflurane Differentially Affect the Regulation of Dopamine and Gamma-aminobutyric Acid Release Mediated by Presynaptic Acetylcholine Receptors in the Rat Striatum

1997 ◽  
Vol 86 (3) ◽  
pp. 632-641 ◽  
Author(s):  
Francois Salord ◽  
Hawa Keita ◽  
Jean-Baptiste Lecharny ◽  
Danielle Henzel ◽  
Jean-Marie Desmonts ◽  
...  

Background General anesthetics are thought to produce their hypnotic effects mainly by acting at ligand-gated ionic channels in the central nervous system (CNS). Although it is well established that volatile anesthetics significantly modify the activity of the acetylcholine nicotinic receptors of the neuromuscular junction, little is known about their actions on the acetylcholine receptors in the CNS. In this study, the effects of halothane and isoflurane on the regulation of dopamine (DA) (gamma-aminobutyric acid [GABA]) depolarization-evoked release mediated by nicotinic (muscarinic) presynaptic receptors were studied in the rat striatum. Methods Assay for GABA (dopamine) release consisted of 3H-GABA (3H-DA)-preloaded synaptosomes with artificial cerebrospinal fluid (0.5 ml/min, 37 degrees C) and measuring the radioactivity obtained from 1-min fractions for 18 min, first in the absence of any treatment (spontaneous release, 8 min), then in the presence of depolarizing agents combined with vaporized halothane and isoflurane (0.5-5%, 5 min), and finally with no pharmacologic stimulation (5 min). The depolarizing agents were potassium chloride (KCl; 9 mM) alone or with acetylcholine (10(-6)-10(-4) M) and/or atropine (10(-5) M) for experiments with 3H-GABA, and KC1 (15 mM) and nicotine (10(-7) - 5 x 10(-4) M) alone or with mecamylamine (10(-5) M) for experiments with 3H-DA. Results Potassium chloride induced a significant, Ca(2+)-dependent release of both 3H-GABA and 3H-DA. Nicotine produced a concentration-related, mecamylamine-sensitive 3H-DA release that was significantly attenuated by nicotine (10(-7) M) preincubation. Acetylcholine elicited a dose-dependent, atropine-sensitive reduction of the KC1-evoked 3H-GABA release. Halothane and isoflurane significantly decreased the nicotine-evoked 3H-DA release but had only limited depressant effects on the KC1-stimulated 3H-DA and no action on the KC1-induced 3H-GABA release. The effects of acetylcholine on 3H-GABA release were reversed by halothane but not by isoflurane. Conclusions Clinically relevant concentrations of halothane and isoflurane significantly, but differentially, alter the presynaptic cholinergic regulation of the release of inhibitory neurotransmitters in the striatum. These results suggest that the cholinergic transmission may represent an important and specific presynaptic target for volatile anesthetics in the CNS.

1995 ◽  
Vol 82 (2) ◽  
pp. 502-511 ◽  
Author(s):  
Jean Mantz ◽  
Jean-Baptiste Lecharny ◽  
Vincent Laudenbach ◽  
Danielle Henzel ◽  
Gilles Peytavin ◽  
...  

Background Numerous classes of anesthetic agents have been shown to enhance the effects mediated by the postsynaptic gamma-aminobutyric acid A (GABAA) receptor-coupled chloride channel in the mammalian central nervous system. However, presynaptic actions of anesthetics potentially relevant to clinical anesthesia remain to be clarified. Therefore, in this study, the effects of intravenous and volatile anesthetics on both the uptake and the depolarization-evoked release of GABA in the rat striatum were investigated. Methods Assay for specific GABA uptake was performed by measuring the radioactivity incorporated in purified striatal synaptosomes incubated with 3H-GABA (20 nM, 5 min, 37 degrees C) and increasing concentrations of anesthetics in either the presence or the absence of nipecotic acid (1 mM, a specific GABA uptake inhibitor). Assay for GABA release consisted of superfusing 3H-GABA preloaded synaptosomes with artificial cerebrospinal fluid (0.5 ml.min-1, 37 degrees C) and measuring the radioactivity obtained from 0.5 ml fractions over 18 min, first in the absence of any treatment (spontaneous release, 8 min), then in the presence of either KCl alone (9 mM, 15 mM) or with various concentrations of anesthetics (5 min), and finally, with no pharmacologic stimulation (5 min). The following anesthetic agents were tested: propofol, etomidate, thiopental, ketamine, halothane, enflurane, isoflurane, and clonidine. Results More than 95% of 3H-GABA uptake was blocked by a 10(-3)-M concentration of nipecotic acid. Propofol, etomidate, thiopental, and ketamine induced a dose-related, reversible, noncompetitive, inhibition of 3H-GABA uptake: IC50 = 4.6 +/- 0.3 x 10(-5) M, 5.8 +/- 0.3 x 10(-5) M, 2.1 +/- 0.4 x 10(-3) M, and 4.9 +/- 0.5 x 10(-4) M for propofol, etomidate, thiopental, and ketamine, respectively. Volatile agents and clonidine had no significant effect, even when used at concentrations greater than those used clinically. KCl application induced a significant, calcium-dependent, concentration-related, increase from basal 3H-GABA release, +34 +/- 10% (P < 0.01) and +61 +/- 13% (P < 0.001), respectively, for 9 mM and 15 mM KCl. The release of 3H-GABA elicited by KCl was not affected by any of the anesthetic agents tested. Conclusions These results indicate that most of the intravenous but not the volatile anesthetics inhibit the specific high-affinity 3H-GABA uptake process in vitro in striatal nerve terminals. However, this action was observed at clinically relevant concentrations only for propofol and etomidate. In contrast, the depolarization-evoked 3H-GABA release was not affected by anesthetics. Together, these data suggest that inhibition of GABA uptake, which results in synaptic GABA accumulation, might contribute to propofol and etomidate anesthesia.


2005 ◽  
Vol 102 (1) ◽  
pp. 110-116 ◽  
Author(s):  
Malin M. Jonsson ◽  
Sten G. E. Lindahl ◽  
Lars I. Eriksson

Background Propofol decreases the acute hypoxic ventilatory response in humans and depresses in vivo carotid body chemosensitivity. The mechanisms behind this impaired oxygen sensing and signaling are not understood. Cholinergic transmission is involved in oxygen signaling, and because general anesthetics such as propofol have affinity to neuronal nicotinic acetylcholine receptors, the authors hypothesized that propofol depresses carotid body chemosensitivity and cholinergic signaling. Methods An isolated rabbit carotid body preparation was used. Chemoreceptor activity was recorded from the whole carotid sinus nerve. The effect of propofol on carotid body chemosensitivity was tested at three different degrees of PO2 reduction. Nicotine-induced chemoreceptor response was evaluated using bolus doses of nicotine given before and after propofol 10-500 microM. The contribution of the gamma-aminobutyric acid A receptor complex was tested by addition of gamma-aminobutyric acid A receptor antagonists. Results Propofol reduced carotid body chemosensitivity; the magnitude of depression was dependent on the reduction in PO2. Furthermore, propofol caused a concentration-dependent (10-500 microM) depression of nicotine-induced chemoreceptor response, with a 50% inhibitory concentration (propofol) of 40 microM. Bicuculline in combination with propofol did not have any additional effect, whereas addition of picrotoxin gave a slightly more pronounced inhibition. Conclusions It is concluded that propofol impairs carotid body chemosensitivity, the magnitude of depression being dependent on the severity of PO2 reduction, and that propofol causes a concentration-dependent block of cholinergic chemotransduction via the carotid sinus nerve, whereas it seems unlikely that an activation of the gamma-aminobutyric acid A receptor complex is involved in this interaction.


1996 ◽  
Vol 271 (6) ◽  
pp. R1707-R1712 ◽  
Author(s):  
D. Nitz ◽  
J. M. Siegel

The activity of neurons in the posterior hypothalamus (PH) is thought to contribute to the production of wakefulness and electroencephalograph desynchronization. Inactivation of neuronal activity in this area is known to induce sleep. Most PH neurons decrease unit discharge during slow-wave sleep (SWS) relative to wake and rapid eye movement sleep. In the present study, we sought to examine potential sources of inhibition or disfacilitation underlying the reduction of PH unit activity during SWS in the cat. We employed the microdialysis technique in conjunction with high-performance liquid chromatography methods for the quantification of glutamate, glycine, and gamma-aminobutyric acid (GABA) release. We found a selective increase in GABA release during SWS in the PH. Glutamate and glycine levels were unchanged across the sleep-wake cycle. microinjection of the GABAA-receptor agonist muscimol, into the same areas from which microdialysis samples were collected, increased SWS time. Our studies support the hypothesis that GABA release in the posterior hypothalamus mediates inhibition of posterior hypothalamic neurons, thereby facilitating SWS.


2007 ◽  
Vol 107 (3) ◽  
pp. 412-418 ◽  
Author(s):  
James E. Richardson ◽  
Paul S. Garcia ◽  
Kate K. O'Toole ◽  
Jason M. C. Derry ◽  
Shannon V. Bell ◽  
...  

Background The gamma-aminobutyric acid type A receptor (GABAA-R) beta subunits are critical targets for the actions for several intravenous general anesthetics, but the precise nature of the anesthetic binding sites are unknown. In addition, little is known about the role the fourth transmembrane (M4) segment of the receptor plays in receptor function. The aim of this study was to better define the propofol binding site on the GABAA-R by conducting a tryptophan scan in the M4 segment of the beta2 subunit. Methods Seven tryptophan mutations were introduced into the C-terminal end of the M4 segment of the GABAA-R beta2 subunit. GABAA-R subunit complementary DNAs were transfected into human embryonic kidney 293 cells grown on glass coverslips. After transfection (36-72 h), coverslips were transferred to a perfusion chamber to assay receptor function. Cells were whole cell patch clamped and exposed to GABA, propofol, etomidate, and pregnenolone. Chemicals were delivered to the cells using two 10-channel infusion pumps and a rapid solution exchanger. Results All tryptophan mutations were well tolerated, and with one exception, all resulted in minimal changes in receptor activation by GABA. One mutation, beta2(Y444W), selectively suppressed the ability of propofol to enhance receptor function while retaining normal sensitivity to etomidate and pregnenolone. Conclusions This is the first report of a mutation that selectively reduces propofol sensitivity without altering the action of etomidate. The reduction in propofol sensitivity is consistent with the loss of a hydrogen bond within the propofol binding site. These results also suggest a possible orientation of the propofol molecule within its binding site.


2009 ◽  
Vol 110 (2) ◽  
pp. 326-332 ◽  
Author(s):  
Hai T. Nguyen ◽  
Ke-yong Li ◽  
Ralph L. daGraca ◽  
Ellise Delphin ◽  
Ming Xiong ◽  
...  

Background It is well documented that several general anesthetics, including propofol, potentiate glycine receptor function. Furthermore, glycine receptors exist throughout the central nervous system, including areas of the brain thought to be involved in sleep. However, the role of glycine receptors in anesthetic-induced hypnosis has not been determined. Methods Experiments were conducted in rats where the loss of righting reflex (LORR) was used as a marker of the hypnotic state. Propofol-induced LORR was examined in the presence and absence of strychnine (a glycine receptor antagonist), GABAzine (a gamma-aminobutyric acid A receptor antagonist), as well as ketamine (an antagonist of N-methyl-D-aspartic acid subtype of glutamate receptors). Furthermore, the effects of propofol on the currents elicited by glycine and gamma-aminobutyric acid were analyzed in neurons isolated from the posterior hypothalamus of rats. The effects of strychnine and GABAzine on propofol-induced currents were also evaluated. Results Strychnine and GABAzine dose-dependently reduced the percentage of rats exhibiting LORR induced by propofol. Furthermore, strychnine significantly increased the onset time and reduced the duration of LORR induced by propofol. In contrast, strychnine did not affect the LORR induced by ketamine. In addition, propofol markedly increased the currents elicited by glycine and GABA of hypothalamic neurons. Conversely, strychnine and GABAzine both profoundly attenuated the current induced by propofol. Conclusion Strychnine, the glycine receptor antagonist, dose-dependently reduced propofol-induced LORR in rats and propofol-induced current of rat hypothalamic neurons. These results suggest that neuronal glycine receptors partially contribute to propofol-induced hypnosis.


2003 ◽  
Vol 98 (2) ◽  
pp. 364-372 ◽  
Author(s):  
Robert I. Westphalen ◽  
Hugh C. Hemmings

Background Depression of glutamate-mediated excitatory transmission and potentiation of gamma-aminobutyric acid (GABA)-mediated inhibitory transmission appear to be primary mechanisms by which general anesthetics produce anesthesia. Since effects on transmitter transport have been implicated in anesthetic actions, the authors examined the sensitivity of presynaptic glutamate and GABA transporters to the effects of a representative volatile (isoflurane) and a representative intravenous (propofol) anesthetic. Methods A dual-isotope (l-[3H]glutamate and [14C]GABA) approach allowed simultaneous comparisons of anesthetic effects on three independent assays of glutamate and GABA transporters in adult rat cerebral cortex: transmitter uptake into isolated nerve terminals (synaptosomes), transmitter binding to lysed and washed synaptosomes (synaptic membranes), and carrier-mediated release (reverse transport) of transmitter from preloaded synaptosomes using a modified superfusion system. Results Isoflurane produced small but statistically significant inhibition of l-[3H]glutamate and [14C]GABA uptake, while propofol had no effect. Inhibition of uptake by isoflurane was noncompetitive, an outcome that was mimicked by indirectly affecting transporter function through synaptosomal depolarization. Neither isoflurane nor propofol affected l-[3H]glutamate or [14C]GABA binding to synaptic membranes or Ca(2+)-independent carrier-mediated l-[3H]glutamate or [14C]GABA release (reverse transport). Conclusions These findings suggest that isoflurane and propofol at clinical concentrations do not affect excitatory glutamatergic transmission or inhibitory GABAergic transmission directly effects on their presynaptic neuronal transporters.


1985 ◽  
Vol 249 (2) ◽  
pp. G192-G196 ◽  
Author(s):  
N. Saito ◽  
K. Taniyama ◽  
C. Tanaka

The presence of gamma-aminobutyric acid (GABA)-ergic neuron in guinea pig gallbladder was investigated by measuring GABA contents and glutamate decarboxylase (GAD) activity and by demonstrating the uptake and release of [3H]GABA. GABA and GAD are both present in the gallbladder, and a positive correlation in regional distribution was observed among GABA, GAD, and the number of ganglion cells. The uptake of [3H]GABA by the gallbladder showed two saturable components; a high-affinity component (Km = 23.3 microM, Vmax = 7.63 nmol X g-1 X 10 min-1) and a low-affinity component (Km = 515 microM, Vmax = 57.1 nmol X g-1 X 10 min-1). These high-affinity and low-affinity transport systems corresponded to those obtained in the presence of beta-alanine and L-2,4-diaminobutyric acid, respectively, thereby suggesting the presence of neuronal and nonneuronal GABA transport systems in this tissue. Electrical transmural stimulation produced an increase in [3H]-GABA release from the isolated gallbladder preloaded with [3H]GABA, in the presence of beta-alanine. The stimulation-evoked release of [3H]GABA was prevented by calcium-free medium containing 1 mM EGTA and tetrodotoxin, thereby indicating that the released GABA originates from the nerve terminals. These results provide evidence for the presence of GABA-ergic neurons in the guinea pig gallbladder.


Sign in / Sign up

Export Citation Format

Share Document