Combination of cisplatin-procaine complex DPR with anticancer drugs increases cytotoxicity against ovarian cancer cell lines

1998 ◽  
Vol 9 (5) ◽  
pp. 457-463 ◽  
Author(s):  
Maurizio Viale ◽  
Maria Pastrone ◽  
Caterina Pellecchia ◽  
Maria O Vannozzi ◽  
Sergio Cafaggi ◽  
...  
Human Cell ◽  
2003 ◽  
Vol 16 (3) ◽  
pp. 131-139 ◽  
Author(s):  
Yoshiaki OKUMA ◽  
Kazushige KIGUCHI ◽  
Yutaka KOSHITAKA ◽  
Asami OKAMURA ◽  
Isamu ISHIWATA ◽  
...  

2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Dongyan Liu ◽  
Xiaonan Hou ◽  
Wangyu Wu ◽  
Valentina Zafagnin ◽  
Yunjian Li ◽  
...  

AbstractWe previously found that preformed complexes of BAK with antiapoptotic BCL2 proteins predict BH3 mimetic sensitivities in lymphohematopoietic cells. These complexes have not previously been examined in solid tumors or in the context of conventional anticancer drugs. Here we show the relative amount of BAK found in preformed complexes with MCL1 or BCLXL varies across ovarian cancer cell lines and patient-derived xenografts (PDXs). Cells bearing BAK/MCL1 complexes were more sensitive to paclitaxel and the MCL1 antagonist S63845. Likewise, PDX models with BAK/MCL1 complexes were more likely to respond to paclitaxel. Mechanistically, BIM induced by low paclitaxel concentrations interacted preferentially with MCL1 and displaced MCL1-bound BAK. Further studies indicated that cells with preformed BAK/MCL1 complexes were sensitive to the paclitaxel/S63845 combination, while cells without BAK/MCL1 complexes were not. Our study suggested that the assessment of BAK/MCL1 complexes might be useful for predicting response to paclitaxel alone or in combination with BH3 mimetics.


2020 ◽  
Vol 31 (19) ◽  
pp. 195101 ◽  
Author(s):  
Mohammad A Obeid ◽  
Siti Aisya S Gany ◽  
Alexander I Gray ◽  
Louise Young ◽  
John O Igoli ◽  
...  

Oncogene ◽  
2008 ◽  
Vol 27 (19) ◽  
pp. 2737-2745 ◽  
Author(s):  
H Sasaki ◽  
J Hayakawa ◽  
Y Terai ◽  
M Kanemura ◽  
A Tanabe-Kimura ◽  
...  

2017 ◽  
Vol 37 (4) ◽  
Author(s):  
Qin Zhang ◽  
Shuxiang Zhang

Ovarian cancer is one of the leading causes of death among gynecological malignancies. Increasing evidence indicate that dysregulation of microRNAs (miRNAs) plays an important role in tumor radioresistance. The aim of the present study is to investigate whether microRNA-214 (miR-214) was involved in radioresistance of human ovarian cancer. Here, we showed that miR-214 was significantly up-regulated in ovarian cancer tissues and radioresistance ovarian cancer cell lines. Transfection of miR-214 agomir in radiosensitive ovarian cancer cell lines promoted them for resistance to ionizing radiation, whereas transfection of miR-214 antagomir in radioresistance ovarian cancer cell lines sensitized them to ionizing radiation again. Furthermore, we found miR-214 effectively promoted tumor radioresistance in xenograft animal experiment. Western blotting and quantitative real-time PCR demonstrated that miR-214 negatively regulated PTEN in radioresistance ovarian cancer cell lines and ovarian cancer tissues. Taken together, our data conclude that miR-214 contributes to radioresistance of ovarian cancer by directly targeting PTEN.


2015 ◽  
Vol 3 (S2) ◽  
Author(s):  
Shin-Wha Lee ◽  
In-Kyung Lee ◽  
Sumin Kim ◽  
Sang-Eun Lee ◽  
Ha-Young Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document