scholarly journals MR Detection of Cortical Spreading Depression Immediately after Focal Ischemia in the Rat

1996 ◽  
Vol 16 (2) ◽  
pp. 214-220 ◽  
Author(s):  
Joachim Röther ◽  
Alexander J. de Crespigny ◽  
Helen D'Arceuil ◽  
Michael E. Moseley

The suture model for middle cerebral artery occlusion (MCAO) was used to induce acute ischemia in rats remotely within a magnetic resonance (MRI) scanner. Serial MR diffusion weighted imaging (DWI) was performed during remote MCAO using an echo planar imaging technique. MR perfusion imaging was performed before and after occlusion using the bolus tracking technique. Transient apparent diffusion coefficient (ADC) changes were detected in six of seven rats as early as 2.7 ± 1.5 min post MCAO. ADC values declined transiently to 70.1 ± 6.0% of control and recovered to 95.5 ± 6.8% of control within 3.3 ± 2.9 min. These ADC changes propagated bidirectionally away from the ischemic core with a speed of 3.0 ± 1.1 mm/min. Transient ADC decreases only occurred in ischemic areas characterized by moderately decreased tissue perfusion. Propagation toward cortical regions with severe tissue perfusion deficits was not detected. DWI can detect the earliest dynamic, reversible ADC changes in the ischemic tissue. The speed of propagation of the decreasing ADC wave, the waveform characteristics, and the occurrence in moderately perturbated tissue are compatible with cortical spreading depression.

1998 ◽  
Vol 274 (4) ◽  
pp. R1158-R1161
Author(s):  
Evvi-Lynn M. Rollins ◽  
James E. Fewell

In newborns and adults of a number of species including humans, exposure to acute hypoxemia produces a “regulated” decease in core temperature, the mechanism of which is unknown. Considering that various cortical areas participate in autonomic regulation including thermoregulation, the present experiments were carried out to test the hypothesis that the cerebral cortex plays a role in modulating the regulated decrease in core temperature during acute hypoxemia. This hypothesis was tested by determining the core temperature response to acute hypoxemia in chronically instrumented adult Sprague-Dawley rats before and after cortical spreading depression (i.e., functional decortication) was produced by the local application of potassium chloride to the dura overlying the cerebral hemispheres. There was no effect of cortical spreading depression on baseline core temperature. Core temperature decreased during acute hypoxemia in a similar fashion when the cerebral cortex was intact as well as during functional decortication. Thus our data do not support the hypothesis that the cerebral cortex modulates the regulated decrease in core temperature that occurs in adult rats during acute hypoxemia.


2014 ◽  
Vol 34 (5) ◽  
pp. 768-775 ◽  
Author(s):  
Joonas A Autio ◽  
Artem Shatillo ◽  
Rashid Giniatullin ◽  
Olli H Gröhn

We found novel types of parenchymal functional magnetic resonance imaging (fMRI) signals in the rat brain during large increases in metabolism. Cortical spreading depression (CSD), a self-propagating wave of cellular activation, is associated with several pathologic conditions such as migraine and stroke. It was used as a paradigm to evoke transient neuronal depolarization leading to enhanced energy consumption. Activation of CSD was investigated using spin-lock (SL), diffusion, blood oxygenation level-dependent and cerebral blood volume fMRI techniques. Our results show that the SL-fMRI signal is generated by endogenous parenchymal mechanisms during CSD propagation, and these mechanisms are not associated with hemodynamic changes or cellular swelling. Protein phantoms suggest that pH change alone does not explain the observed SL-fMRI signal changes. However, increased amounts of inorganic phosphates released from high-energy phosphates combined with pH changes may produce SL- power-dependent longitudinal relaxation in the rotating frame ( R1ρ) changes in protein phantoms that are similar to those observed during CSD, as seen before in acute ischemia under our experimental conditions. This links SL-fMRI changes intimately to energy metabolism and supports the use of the SL technique as a new, promising functional approach for noninvasive imaging of metabolic transitions in the active or pathologic brain.


1996 ◽  
Vol 16 (2) ◽  
pp. 221-226 ◽  
Author(s):  
Kazushi Matsushima ◽  
Matthew J. Hogan ◽  
Antoine M. Hakim

The possibility that cortical spreading depression (CSD) may have neuroprotective action during subsequent focal cerebral ischemia was examined in rats. Three days before the imposition of focal cerebral ischemia CSDs were elicited by applying potassium chloride (KCl) for 2 h through a microdialysis probe implanted in the occipital cortex. Control animals were handled identically except that saline was infused instead of KCl. Focal ischemia was produced by the intraluminal suture method and cortical and subcortical infarct volumes were measured 7 days later. Neocortical infarct volume was reduced from 124.8 ± 49.5 mm3 in the controls to 62.9 ± 59.5 mm3 in the animals preconditioned with CSD (p = 0.012). There was no difference between the two groups in the subcortical infarct volume or in CBF, measured by the hydrogen clearance method, during or immediately after the ischemic interval. Our data indicate that preconditioning CSD applied 3 days before middle cerebral artery occlusion may increase the brain's resistance to focal ischemic damage and may be used as a model to explore the neuroprotective molecular responses of neuronal and glial cells.


1994 ◽  
Vol 14 (6) ◽  
pp. 939-943 ◽  
Author(s):  
Zheng Gang Zhang ◽  
Michael Chopp ◽  
Kenneth I. Maynard ◽  
Michael A. Moskowitz

CBF increases concomitantly with cortical spreading depression (CSD). We tested the hypothesis that CBF changes during CSD are mediated by nitric oxide (NO). Male Wistar rats (n = 23) were subjected to KCl-induced CSD before and after administration of nitric oxide synthase (NOS) inhibitors N-nitro-l-arginine (L-NNA) or N-nitro-l-arginine methyl ester (L-NAME) and in nontreated animals. CBF, CSD, and mean arterial blood pressure were recorded. Brain NOS activity was measured in vitro in control, L-NNA, and L-NAME-treated rats by the conversion of [3H]arginine to [3H]citrulline. Our data show that the NOS inhibitors did not significantly change regional CBF (rCBF) during CSD, even though cortical NOS activity was profoundly depressed and systemic arterial blood pressure was significantly increased. Our data suggest that rCBF during CSD in rats is not regulated by NO.


Cephalalgia ◽  
2016 ◽  
Vol 39 (3) ◽  
pp. 333-341 ◽  
Author(s):  
Yan Wang ◽  
Anne E Tye ◽  
Junli Zhao ◽  
Dongqing Ma ◽  
Ann C Raddant ◽  
...  

Objective The neuropeptide calcitonin gene-related peptide (CGRP) has now been established as a key player in migraine. However, the mechanisms underlying the reported elevation of CGRP in the serum and cerebrospinal fluid of some migraineurs are not known. A candidate mechanism is cortical spreading depression (CSD), which is associated with migraine with aura and traumatic brain injury. The aim of this study was to investigate whether CGRP gene expression may be induced by experimental CSD in the rat cerebral cortex. Methods CSD was induced by topical application of KCl and monitored using electrophysiological methods. Quantitative PCR and ELISA were used to measure CGRP mRNA and peptide levels in discrete ipsilateral and contralateral cortical regions of the rat brain 24 hours following CSD events and compared with sham treatments. Results The data show that multiple, but not single, CSD events significantly increase CGRP mRNA levels at 24 hours post-CSD in the ipsilateral rat cerebral cortex. Increased CGRP was observed in the ipsilateral frontal, motor, somatosensory, and visual cortices, but not the cingulate cortex, or contralateral cortices. CSD also induced CGRP peptide expression in the ipsilateral, but not contralateral, cortex. Conclusions Repeated CSD provides a mechanism for prolonged elevation of CGRP in the cerebral cortex, which may contribute to migraine and post-traumatic headache.


Cephalalgia ◽  
2007 ◽  
Vol 27 (9) ◽  
pp. 1010-1013 ◽  
Author(s):  
M Alemdar ◽  
Ö Akman ◽  
HM Selekler ◽  
SŞ Komsuoğlu ◽  
N Ateş

Cortical spreading depression (CSD) is supposed to be the underlying biological basis of the migraine aura. Metoprolol was proven to be effective in migraine prophylaxis in clinical trials, but its mechanism of action has not been clarified yet. We studied direct effects of metoprolol on a continuous CSD induction model in rats. Six adult Wistar rats were anaesthetized with intraperitoneal thiopental (50 mg/kg). CSD was induced with application of 1 M KCL through a burr hole into the left frontal dura-mater, and recorded by an Ag/AgCl DC electrode on the left parietal dura-mater. After a basal recording of CSD induction during the first 40-min period, metoprolol (5 mg/kg) was infused within 4 min. Then DC recordings were maintained for a further 120 min. Any significant differences in total number and duration of CSDs before and after metoprolol administration were not detected. This study suggests that the mode of action of metoprolol in prophylaxis is not via direct CSD inhibition.


2004 ◽  
Vol 24 (10) ◽  
pp. 1167-1171 ◽  
Author(s):  
Hiromi Muramatsu ◽  
Katalin Karikó ◽  
Frank A. Welsh

Cortical application of KCl has previously been shown to induce tolerance to a subsequent episode of cerebral ischemia. KCl triggers recurrent episodes of cortical spreading depression and produces a small lesion at the cortical application site. To determine whether a cortical lesion alone is sufficient to induce tolerance to ischemia, the authors used 5-mol/L NaCl to precondition rat brain 3 days before permanent occlusion of the middle cerebral artery. NaCl produced a small lesion at the application site without evoking cortical spreading depression. Preconditioning with 5-mol/L NaCl significantly attenuated the decrease in CBF after middle cerebral artery occlusion and reduced the volume of cortical infarction by 35%. The results show that a small cortical lesion, by itself, is sufficient to induce tolerance to ischemia.


1997 ◽  
Vol 17 (5) ◽  
pp. 591-595 ◽  
Author(s):  
Thomas Els ◽  
Joachim Röther ◽  
Christian Beaulieu ◽  
Alexander de Crespigny ◽  
Michael Moseley

We investigated the effect of hyperglycemia on the initiation and propagation of spreading depression-like peri-infarct ischemic depolarization (SD) induced by focal cerebral ischemia in rats. Peri-infarct SD were monitored during the initial 15 minutes after remotely induced middle cerebral artery occlusion (MCAO) using serial diffusion weighted magnetic resonance imaging. Maps of the apparent diffusion coefficient (ADC) were calculated and ADC decreases were monitored over time. Hyperglycemic rats (n = 6) had a significant prolongation of the time from induction of MCAO to the start of the ADC decrease as compared with normoglycemic control rats. The time to the maximal ADC decrease was significantly delayed and recovery of transient ADC declines in the area adjacent to the ischemic core was significantly faster in hyperglycemic rats. We conclude that hyperglycemia delays the terminal depolarization in the ischemic core and supports a faster repolarization in severely mal-perfused penumbral tissue after SD, which reflects the increased availability of energy substrates in the state of hyperglycemia.


1994 ◽  
Vol 266 (4) ◽  
pp. R1136-R1140 ◽  
Author(s):  
G. Florence ◽  
G. Bonvento ◽  
R. Charbonne ◽  
J. Seylaz

The experiment examines whether the mechanisms responsible for the autoregulation of cerebral blood flow (CBF) in response to hypotension were affected during the initial phase of cortical spreading depression (CSD). CSD was induced by a cortical pinprick in anesthetized rabbits, and CBF was measured by laser-Doppler flowmetry through a chronically implanted Plexiglas window. The reactivity to CO2 and papaverine was also studied before and after CSD. Fifteen minutes after CSD, autoregulatory vasodilation was reduced (P < 0.01). This impairment was reversible, since the autoregulatory response was restored 35 min after CSD. The time course of the reactivity to papaverine after CSD paralleled the autoregulatory response, with a significant correlation between the two reactivities (r = 0.47; P < 0.01). Conversely, the reactivity to CO2 was significantly reduced after CSD (P < 0.001) and remained affected for at least 95 min. We conclude that the mechanisms underlying autoregulation are transiently disturbed by CSD and that these mechanisms are not mediated by an accumulation of CO2 but seem instead to be related to an increase in adenosine 3',5'-cyclic monophosphate concentration.


VASA ◽  
2017 ◽  
Vol 46 (5) ◽  
pp. 383-388 ◽  
Author(s):  
Henrik Christian Rieß ◽  
Anna Duprée ◽  
Christian-Alexander Behrendt ◽  
Tilo Kölbel ◽  
Eike Sebastian Debus ◽  
...  

Abstract. Background: Perioperative evaluation in peripheral artery disease (PAD) by common vascular diagnostic tools is limited by open wounds, medial calcinosis or an altered collateral supply of the foot. Indocyanine green fluorescent imaging (ICG-FI) has recently been introduced as an alternative tool, but so far a standardized quantitative assessment of tissue perfusion in vascular surgery has not been performed for this purpose. The aim of this feasibility study was to investigate a new software for quantitative assessment of tissue perfusion in patients with PAD using indocyanine green fluorescent imaging (ICG-FI) before and after peripheral bypass grafting. Patients and methods: Indocyanine green fluorescent imaging was performed in seven patients using the SPY Elite system before and after peripheral bypass grafting for PAD (Rutherford III-VI). Visual and quantitative evaluation of tissue perfusion was assessed in an area of low perfusion (ALP) and high perfusion (AHP), each by three independent investigators. Data assessment was performed offline using a specially customized software package (Institute for Laser Technology, University Ulm, GmbH). Slope of fluorescent intensity (SFI) was measured as time-intensity curves. Values were compared to ankle-brachial index (ABI), slope of oscillation (SOO), and time to peak (TTP) obtained from photoplethysmography (PPG). Results: All measurements before and after surgery were successfully performed, showing that ABI, TTP, and SOO increased significantly compared to preoperative values, all being statistically significant (P < 0.05), except for TTP (p = 0.061). Further, SFI increased significantly in both ALP and AHP (P < 0.05) and correlated considerably with ABI, TTP, and SOO (P < 0.05). Conclusions: In addition to ABI and slope of oscillation (SOO), the ICG-FI technique allows visual assessment in combination with quantitative assessment of tissue perfusion in patients with PAD. Ratios related to different perfusion patterns and SFI seem to be useful tools to reduce factors disturbing ICG-FI measurements.


Sign in / Sign up

Export Citation Format

Share Document