Comparison of Irbesartan with Captopril Effects on Cardiac Hypertrophy and Gene Expression in Heart Failure-Prone Male SHHF/Mcc-facp Rats

1999 ◽  
Vol 33 (3) ◽  
pp. 451-460 ◽  
Author(s):  
Joseph W. Carraway ◽  
Sonhee Park ◽  
Sylvia A. McCune ◽  
Bethany J. Holycross ◽  
M. Judith Radin
2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
H R Helmi ◽  
A P Sunjaya ◽  
D Limanan ◽  
A R Prijanti ◽  
S W A Jusman ◽  
...  

Abstract Background Apelin, an adipokine peptide and its receptor has recently emerged as a key signaling pathway in maintaining cardiac performance at chronic pressure loads. Apelin has been linked to ventricular dysfunction and therefore maybe of pathophysiologic relevance as a candidate biomarker in HF patients. Purpose This study aims to investigate Apelin-13 gene expression and level, and Apelin receptor (APJ) level in a rat model of heart failure induced by chronic systemic hypoxia and their correlation to BNP-45 gene expression and level, the current gold standard biomarker for heart failure, and to cardiac histopathologic changes. The effect of chronic systemic hypoxia on cardiac hypertrophy, remodeling and heart failure parameters is also of interest. Methods Twenty-eight male Sprague-Dawley rats (8–12 weeks of age) were placed in special hypoxic chambers divided into 7 groups – a control group provided with normoxia (atmospheric O2 levels) and 6 exposure groups exposed to hypoxia (8% O2) for 6 hours, 1, 3, 5, 7 and 14 days respectively prior to measurement. Changes in the expression of Apelin and BNP-45 were measured using quantitative real-time PCR, whereas changes in Apelin-13, APJ and BNP-45 levels were measured using ELISA. Histopathology staining using Hematoxylin and Eosin was performed on cardiac tissues post-termination. Results Compared to control, BNP-45 mRNA expression in the hypoxic heart was only significantly different in day 14, whereas, Apelin mRNA expression had showed significantly higher values starting from day 7 onward. This is in line with the evidence of cardiac hypertrophy based on histopathologic examination present from day 7 onwards. BNP-45 and Apelin-13 levels were significantly higher compared to control from day 5 onwards with a peak on day 7. Although significantly higher than control, Apelin-13 and BNP-45 level decreases in day 14 as compared to day 7. Mean APJ levels showed a similar profile with Apelin-13 and BNP-45 levels with a peak in day 7 (4.619 ng/mL). The cardiac Apelin-13 level shows strong significant correlation with BNP-45 levels (r 0.823, p-value 0.0001). There was also a strong significant correlation between APJ receptor levels with Apelin-13 (r 0.9029, p-value 0.001) and BNP-45 (r 0.9062, p-value 0.0009) levels. Apelin-13, APJ and BNP-45 levels also showed strong significant positive correlation to the duration of hypoxia exposure. Conclusion Chronic (≥5 days) and not acute systemic hypoxia in an experimental rat model leads to increase in Apelin-13, APJ and BNP-45 levels. Apelin-13 and BNP-45 were found to significantly increase from 5 days onwards. Apelin mRNA expression was found to show significant increase earlier compared to BNP-45 mRNA expression. Hence, Apelin may serve as a new candidate biomarker for detection of HF due to oxidative stress compared to BNP-45. Exposure to chronic systemic hypoxia can serve as an easily replicable rat model for heart failure. Acknowledgement/Funding Department of Biochemistry and Molecular Biology, Faculty of Medicine, Tarumanagara University, Jakarta, Indonesia


2006 ◽  
Vol 34 (6) ◽  
pp. 1138-1140 ◽  
Author(s):  
A.J. Bingham ◽  
L. Ooi ◽  
I.C. Wood

Cardiac hypertrophy is an increase in the size of cardiac myocytes to generate increased muscle mass, usually driven by increased workload for the heart. Although important during postnatal development and an adaptive response to physical exercise, excessive hypertrophy can result in heart failure. One characteristic of hypertrophy is the re-expression of genes that are normally only expressed during foetal heart development. Although the involvement of these changes in gene expression in hypertrophy has been known for some years, the mechanisms involved in this re-expression are only now being elucidated and the transcription factor REST (repressor element 1-silencing transcription factor) has been identified as an important repressor of hypertrophic gene expression.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
J Ruedebusch ◽  
A Benkner ◽  
N Nath ◽  
L Kaderali ◽  
K Klingel ◽  
...  

Abstract Background Heart Failure (HF) is associated with endothelial dysfunction and reduced bioavailability of NO with insufficient stimulation of sGC and reduced production of cGMP. Therefore, the impairment of the NO-sGC-cGMP pathway results in vasoconstriction, platelet aggregation, inflammation, fibrosis and most importantly maladaptive cardiac hypertrophy. The restoration of the NO-sGC -cGMP pathway is an attractive pharmacological target for HF therapy. Purpose Riociguat is an NO independent stimulator of the sGC that sensitizes the sGC to endogenous NO and directly stimulates sGC to produce cGMP. We therefore hypothesized that Riociguat prevents pathological effects occurring during HF. Methods Pressure overload was induced by transverse aortic constriction (TAC) in 8 weeks old male C57Bl6/N mice. Three weeks after TAC when cardiac hypertrophy has developed either Riociguat (RIO; 3 mg/kg) or a Solvent was administered daily for 5 more weeks (n=12 per group). Animals with sham surgery and same drug regime served as controls. The heart function in all groups was evaluated weekly by small animal echocardiography. Eight weeks after surgery, the transcriptome of the left ventricles (LV) of sham and TAC mice were analysed by RNA Sequencing. Differentially expressed genes (DEG) were categorised using Ingenuity Pathway Analysis (IPA). Results TAC resulted in a steady decrease of left ventricular fractional shortening (FS) in the mice until week 3. When Riociguat treatment commenced, the systolic LV function of the TAC+Rio group recovered significantly whereas the solvent group showed a further decline until week 8 (FS 21.4±3.4% vs. 9.5±2%, p<0.001). Both sham groups (Sham+Sol and Sham+Rio) showed no changes in the heart function over timer. Regarding the hypertrophic response to LV pressure overload, Riociguat treatment attenuated significantly the increase of the left ventricular mass (LVM 208.3±15.8mg vs. 148.9±11.8mg, p<0.001) after TAC. In line with the reduced LVM, histological staining showed a significantly reduced fibrosis and myocyte cross sectional area in the TAC+Rio group compared to TAC+Sol group. Regarding the myocardial transcriptome, the treatment with Riociguat resulted in less changes of gene expression pattern after TAC (TAC+Sol vs. Sham+Sol 3160 DEG; TAC+Rio vs. Sham+Rio 2237 DEG). The expression of heart failure marker genes like ANP (Nppa), BNP (Nppb), β-Myosin Heavy Chain (Myh7) and the Collagens 1 and 3 (Col1a1, Col1a2, Col3a1) were significantly decreased in TAC+Rio, when compared to TAC+Sol. IPA analysis revealed that the activation of biological pathways in response to TAC, like actin cytoskeleton- and Integrin signalling, renin-angiotensin or cardiac hypertrophy signalling was attenuated when Riociguat was administered. Conclusion Riociguat attenuates pressure overload induced LV remodelling resulting in less hypertrophy, improved heart function and less alteration of gene expression pattern.


2021 ◽  
Vol 14 (676) ◽  
pp. eabb5968
Author(s):  
Ryan C. Coleman ◽  
Akito Eguchi ◽  
Melissa Lieu ◽  
Rajika Roy ◽  
Eric W. Barr ◽  
...  

Aberrant changes in gene expression underlie the pathogenesis and progression of pressure-overload heart failure, leading to maladaptive cardiac hypertrophy, ventricular remodeling, and contractile dysfunction. Signaling through the G protein Gq triggers maladaptation and heart failure, in part through the activation of G protein–coupled receptor kinase 5 (GRK5). Hypertrophic stimuli induce the accumulation of GRK5 in the nuclei of cardiomyocytes, where it regulates pathological gene expression through multiple transcription factors including NFAT. The nuclear targeting of GRK5 is mediated by an amino-terminal (NT) domain that binds to calmodulin (CaM). Here, we sought to prevent GRK5-mediated pathology in pressure-overload maladaptation and heart failure by expressing in cardiomyocytes a peptide encoding the GRK5 NT (GRK5nt) that encompasses the CaM binding domain. In cultured cardiomyocytes, GRK5nt expression abrogated Gq-coupled receptor–mediated hypertrophy, including attenuation of pathological gene expression and the transcriptional activity of NFAT and NF-κB. We confirmed that GRK5nt bound to and blocked Ca2+-CaM from associating with endogenous GRK5, thereby preventing GRK5 nuclear accumulation after pressure overload. We generated mice that expressed GRKnt in a cardiac-specific fashion (TgGRK5nt mice), which exhibited reduced cardiac hypertrophy, ventricular dysfunction, pulmonary congestion, and cardiac fibrosis after chronic transverse aortic constriction. Together, our data support a role for GRK5nt as an inhibitor of pathological GRK5 signaling that prevents heart failure.


2005 ◽  
Vol 20 (3) ◽  
pp. 256-267 ◽  
Author(s):  
Maren Wellner ◽  
Ralf Dechend ◽  
Joon-Keun Park ◽  
Erdenechimeg Shagdarsuren ◽  
Nidal Al-Saadi ◽  
...  

About one-half of double transgenic rats (dTGR) overexpressing the human renin and angiotensinogen genes die by age 7 wk of terminal heart failure (THF); the other (preterminal) one-half develop cardiac damage but survive. Our study’s aim was to elucidate cardiac gene expression differences in dTGR-THF compared with dTGR showing compensated cardiac hypertrophy but not yet THF. dTGR treated with losartan (LOS) and nontransgenic rats (SD) served as controls. THF-dTGR body weight was significantly lower than for all other groups. At death, THF-dTGR had blood pressures of 228 ± 7 mmHg (cardiac hypertrophy index 6.2 ± 0.1 mg/g). Tissue Doppler showed reduced peak early (Ea) to late (Aa) diastolic expansion in THF-dTGR, indicating diastolic function. Preterminal dTGR had blood pressures of 197 ± 5 mmHg (cardiac hypertrophy index 5.1 ± 0.1 mg/g); Ea < Aa compared with LOS-dTGR (141 ± 6 mmHg; 3.7±0.1 mg/g; Ea > Aa) and SD (112 ± 4 mmHg; 3.6 ± 0.1 mg/g; Ea > Aa). Left ventricular RNA was isolated for the Affymetrix system and TaqMan RT-PCR. THF-dTGR and dTGR showed upregulation of hypertrophy markers and α/β-myosin heavy chain switch to the fetal isoform. THF-dTGR (vs. dTGR) showed upregulation of 239 and downregulation of 150 genes. Various genes of mitochodrial respiratory chain and lipid catabolism were reduced. In addition, genes encoding transcription factors (CEBP-β, c-fos, Fra-1), coagulation, remodeling/repair components (HSP70, HSP27, heme oxygenase), immune system (complement components, IL-6), and metabolic pathway were differentially expressed. In contrast, LOS-dTGR and SD had similar expression profiles. These data demonstrate that THF-dTGR show an altered expression profile compared with preterminal dTGR.


Sign in / Sign up

Export Citation Format

Share Document