scholarly journals A peptide of the N terminus of GRK5 attenuates pressure-overload hypertrophy and heart failure

2021 ◽  
Vol 14 (676) ◽  
pp. eabb5968
Author(s):  
Ryan C. Coleman ◽  
Akito Eguchi ◽  
Melissa Lieu ◽  
Rajika Roy ◽  
Eric W. Barr ◽  
...  

Aberrant changes in gene expression underlie the pathogenesis and progression of pressure-overload heart failure, leading to maladaptive cardiac hypertrophy, ventricular remodeling, and contractile dysfunction. Signaling through the G protein Gq triggers maladaptation and heart failure, in part through the activation of G protein–coupled receptor kinase 5 (GRK5). Hypertrophic stimuli induce the accumulation of GRK5 in the nuclei of cardiomyocytes, where it regulates pathological gene expression through multiple transcription factors including NFAT. The nuclear targeting of GRK5 is mediated by an amino-terminal (NT) domain that binds to calmodulin (CaM). Here, we sought to prevent GRK5-mediated pathology in pressure-overload maladaptation and heart failure by expressing in cardiomyocytes a peptide encoding the GRK5 NT (GRK5nt) that encompasses the CaM binding domain. In cultured cardiomyocytes, GRK5nt expression abrogated Gq-coupled receptor–mediated hypertrophy, including attenuation of pathological gene expression and the transcriptional activity of NFAT and NF-κB. We confirmed that GRK5nt bound to and blocked Ca2+-CaM from associating with endogenous GRK5, thereby preventing GRK5 nuclear accumulation after pressure overload. We generated mice that expressed GRKnt in a cardiac-specific fashion (TgGRK5nt mice), which exhibited reduced cardiac hypertrophy, ventricular dysfunction, pulmonary congestion, and cardiac fibrosis after chronic transverse aortic constriction. Together, our data support a role for GRK5nt as an inhibitor of pathological GRK5 signaling that prevents heart failure.

2020 ◽  
Author(s):  
Sarah M. Schumacher ◽  
Kamila M. Bledzka ◽  
Jessica Grondolsky ◽  
Rajika Roy ◽  
Erhe Gao ◽  
...  

AbstractG protein-coupled receptor (GPCR) kinase 2 (GRK2) expression and activity are elevated early on in response to several forms of cardiovascular stress and are a hallmark of heart failure. Interestingly, though, in addition to its well-characterized role in regulating GPCRs, mounting evidence suggests a GRK2 “interactome” that underlies a great diversity in its functional roles. Several such GRK2 interacting partners are important for adaptive and maladaptive myocyte growth; therefore, an understanding of domain-specific interactions with signaling and regulatory molecules could lead to novel targets for heart failure therapy. While elevated cardiac levels and activity of GRK2 contribute to adverse heart remodeling and contractile dysfunction, inhibition of GRK2 via overexpression of a carboxyl-terminal peptide, βARKct, or its amino-terminal domain Regulator of G protein Signaling (RGS) homology domain (βARKrgs) can enhance cardiac function and can prevent heart failure development via Gβγ or Gαq sequestration, respectively. Previously, our lab investigated cardiac-specific transgenic expression of a fragment of this RGS domain (βARKnt) (residues 50-145). In contrast to βARKrgs this fragment did not alter acute hypertrophy after pressure overload or demonstrate RGS activity in vivo against Gq-mediated signaling. Herein, we subjected these transgenic mice to pressure overload and found that unlike their littermate controls or previous GRK2 fragments, they exhibited an increased left ventricular wall thickness and mass prior to cardiac stress that underwent proportional hypertrophic growth to controls after acute pressure overload. Importantly, despite this enlarged heart, βARKnt mice did not undergo the expected transition to heart failure observed in controls. Further, βARKnt expression limited adverse left ventricular remodeling and increased cell survival signaling. These data support the idea that the βARKnt peptide embodies a distinct functional interaction and novel means of cardioprotection during pressure-overload induced heart failure.


2021 ◽  
Vol 8 ◽  
Author(s):  
Weijiang Tan ◽  
Xiang Li ◽  
Shuang Zheng ◽  
Xiaohui Li ◽  
Xiaoshen Zhang ◽  
...  

Heart failure is induced by multiple pathological mechanisms, and current therapies are ineffective against heart failure with preserved ejection fraction (HFpEF). As there are limited animal models of HFpEF, its underlying mechanisms have not yet been elucidated. Here, we employed the descending aortic constriction (DAC) technique to induce chronic pressure overload in the left ventricles of Tibetan minipigs for 12 weeks. Cardiac function, pathological and cellular changes, fibrotic signaling activation, and gene expression profiles were explored. The left ventricles developed concentric hypertrophy from weeks 4 to 6 and transition to dilation starting in week 10. Notably, the left ventricular ejection fraction was maintained at >50% in the DAC group during the 12-week period. Pathological examination, biochemical analyses, and gene profile analysis revealed evidence of inflammation, fibrosis, cell death, and myofilament dephosphorylation in the myocardium of HFpEF model animals, together with gene expression shifts promoting cardiac remodeling and downregulating metabolic pathways. Furthermore, we noted the activation of several signaling proteins that impact cardiac fibrosis and remodeling, including transforming growth factor-β/SMAD family members 2/3, type I/III/V collagens, phosphatidylinositol 3-kinase, extracellular signal-regulated kinase, matrix metalloproteinases 2 and 9, tissue inhibitor of metalloproteinases 1 and 2, interleukins 6 and 1β, and inhibitor of κBα/nuclear factor-κB. Our findings demonstrate that this chronic pressure overload-induced porcine HFpEF model is a powerful tool to elucidate the mechanisms of this disease and translate preclinical findings.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
J Ruedebusch ◽  
A Benkner ◽  
N Nath ◽  
L Kaderali ◽  
K Klingel ◽  
...  

Abstract Background Heart Failure (HF) is associated with endothelial dysfunction and reduced bioavailability of NO with insufficient stimulation of sGC and reduced production of cGMP. Therefore, the impairment of the NO-sGC-cGMP pathway results in vasoconstriction, platelet aggregation, inflammation, fibrosis and most importantly maladaptive cardiac hypertrophy. The restoration of the NO-sGC -cGMP pathway is an attractive pharmacological target for HF therapy. Purpose Riociguat is an NO independent stimulator of the sGC that sensitizes the sGC to endogenous NO and directly stimulates sGC to produce cGMP. We therefore hypothesized that Riociguat prevents pathological effects occurring during HF. Methods Pressure overload was induced by transverse aortic constriction (TAC) in 8 weeks old male C57Bl6/N mice. Three weeks after TAC when cardiac hypertrophy has developed either Riociguat (RIO; 3 mg/kg) or a Solvent was administered daily for 5 more weeks (n=12 per group). Animals with sham surgery and same drug regime served as controls. The heart function in all groups was evaluated weekly by small animal echocardiography. Eight weeks after surgery, the transcriptome of the left ventricles (LV) of sham and TAC mice were analysed by RNA Sequencing. Differentially expressed genes (DEG) were categorised using Ingenuity Pathway Analysis (IPA). Results TAC resulted in a steady decrease of left ventricular fractional shortening (FS) in the mice until week 3. When Riociguat treatment commenced, the systolic LV function of the TAC+Rio group recovered significantly whereas the solvent group showed a further decline until week 8 (FS 21.4±3.4% vs. 9.5±2%, p<0.001). Both sham groups (Sham+Sol and Sham+Rio) showed no changes in the heart function over timer. Regarding the hypertrophic response to LV pressure overload, Riociguat treatment attenuated significantly the increase of the left ventricular mass (LVM 208.3±15.8mg vs. 148.9±11.8mg, p<0.001) after TAC. In line with the reduced LVM, histological staining showed a significantly reduced fibrosis and myocyte cross sectional area in the TAC+Rio group compared to TAC+Sol group. Regarding the myocardial transcriptome, the treatment with Riociguat resulted in less changes of gene expression pattern after TAC (TAC+Sol vs. Sham+Sol 3160 DEG; TAC+Rio vs. Sham+Rio 2237 DEG). The expression of heart failure marker genes like ANP (Nppa), BNP (Nppb), β-Myosin Heavy Chain (Myh7) and the Collagens 1 and 3 (Col1a1, Col1a2, Col3a1) were significantly decreased in TAC+Rio, when compared to TAC+Sol. IPA analysis revealed that the activation of biological pathways in response to TAC, like actin cytoskeleton- and Integrin signalling, renin-angiotensin or cardiac hypertrophy signalling was attenuated when Riociguat was administered. Conclusion Riociguat attenuates pressure overload induced LV remodelling resulting in less hypertrophy, improved heart function and less alteration of gene expression pattern.


2005 ◽  
Vol 21 (3) ◽  
pp. 314-323 ◽  
Author(s):  
Henk P. J. Buermans ◽  
Everaldo M. Redout ◽  
Anja E. Schiel ◽  
René J. P. Musters ◽  
Marian Zuidwijk ◽  
...  

Myocardial right ventricular (RV) hypertrophy due to pulmonary hypertension is aimed at normalizing ventricular wall stress. Depending on the degree of pressure overload, RV hypertrophy may progress to a state of impaired contractile function and heart failure, but this cannot be discerned during the early stages of ventricular remodeling. We tested whether critical differences in gene expression profiles exist between ventricles before the ultimate development of either a compensated or decompensated hypertrophic phenotype. Both phenotypes were selectively induced in Wistar rats by a single subcutaneous injection of either a low or a high dose of the pyrrolizidine alkaloid monocrotaline (MCT). Spotted oligonucleotide microarrays were used to investigate pressure-dependent cardiac gene expression profiles at 2 wk after the MCT injections, between control rats and rats that would ultimately develop either compensated or decompensated hypertrophy. Clustering of significantly regulated genes revealed specific expression profiles for each group, although the degree of hypertrophy was still similar in both. The ventricles destined to progress to failure showed activation of pro-apoptotic pathways, particularly related to mitochondria, whereas the group developing compensated hypertrophy showed blocked pro-death effector signaling via p38-MAPK, through upregulation of MAPK phosphatase-1. In summary, we show that, already at an early time point, pivotal differences in gene expression exist between ventricles that will ultimately develop either a compensated or a decompensated phenotype, depending on the degree of pressure overload. These data reveal genes that may provide markers for the early prediction of clinical outcome as well as potential targets for early intervention.


2021 ◽  
Vol 8 ◽  
Author(s):  
Haiyan Deng ◽  
Lei-Lei Ma ◽  
Fei-Juan Kong ◽  
Zengyong Qiao

The transverse aortic constriction (TAC) model surgery is a widely used disease model to study pressure overload–induced cardiac hypertrophy and heart failure in mice. The severity of adverse cardiac remodeling of the TAC model is largely dependent on the degree of constriction around the aorta, and the phenotypes of TAC are also different in different mouse strains. Few studies focus on directly comparing phenotypes of the TAC model with different degrees of constriction around the aorta, and no study compares the difference in C57BL/6N mice. In the present study, C57BL/6N mice aged 10 weeks were subjected to sham, 25G TAC, 26G TAC, and 27G TAC surgery for 4 weeks. We then analyzed the different phenotypes induced by 25G TAC, 26G TAC, and 27G TAC in c57BL/6N mice in terms of pressure gradient, cardiac hypertrophy, cardiac function, heart failure situation, survival condition, and cardiac fibrosis. All C57BL/6N mice subjected to TAC surgery developed significantly hypertrophy. Mice subjected to 27G TAC had severe cardiac dysfunction, severe cardiac fibrosis, and exhibited characteristics of heart failure at 4 weeks post-TAC. Compared with 27G TAC mice, 26G TAC mice showed a much milder response in cardiac dysfunction and cardiac fibrosis compared to 27G TAC, and a very small fraction of the 26G TAC group exhibited characteristics of heart failure. There was no obvious cardiac dysfunction, cardiac fibrosis, and characteristics of heart failure observed in 25G TAC mice. Based on our results, we conclude that the 25G TAC, 26G TAC, and 27G TAC induced distinct phenotypes in C57BL/6N mice.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Allison E Schafer ◽  
Iñigo Valiente-Alandi ◽  
Burns C Blaxall

Heart failure (HF), the leading cause of morbidity and mortality in the United States, is characterized by pathologic remodeling, fibrosis and deteriorating cardiac function. Cardiac fibrosis occurs due to imbalanced production and degradation of extracellular matrix (ECM) proteins. Cardiac fibroblasts (CF) are largely responsible for the secretion of ECM proteins in the heart, and upon injury, transition to a migratory and proliferative myofibroblast (MF) phenotype, leading to excess ECM deposition. Elevated expression of matrix metalloproteinases (MMPs), proteolytic enzymes responsible for degradation of the ECM, is common in HF. Specifically, MMP13 is known to be upregulated in human HF patients. Therefore, we hypothesized that MMP13 plays an important role in pathologic cardiac remodeling, and that inhibition of MMP13 would prevent the development of HF in a pressure overload model, transverse aortic constriction (TAC). Mice were subjected to TAC and treated with the MMP13 inhibitor, WAY170523 (WAY), or vehicle 4 weeks post-TAC until 12 weeks post-TAC. Mice treated with WAY display decreased cardiac hypertrophy and preserved cardiac function compared to vehicle treated mice. WAY treatment may also attenuate interstitial and perivascular fibrosis as well as expression of pro-fibrotic genes. To determine the effect of MMP13 inhibition in cardiac cells, CF and MF were isolated from healthy mice or mice 5 days post-ischemia/reperfusion injury, respectively, and treated with WAY. MMP13 inhibition led to decreased CF invasion but did not affect migration, proliferation or adhesion. Interestingly, inhibition of MMP13 in MF attenuated migration, proliferation and invasion. Moreover, WAY treatment reduced collagen and fibronectin deposition in the ECM of MF. MMP13 inhibition also appeared to decrease Angiotensin II-induced hypertrophy in ventricular cardiomyocytes (CM). These data suggest a role for MMP13 in pressure overload-induced HF, CM hypertrophy and CF behavior. MMP13 inhibition after injury may attenuate cardiac hypertrophy as well as the CF to MF transition, leading to decreased cardiac fibrosis and improved cardiac function. Further understanding of the role of MMP13 could lead to a novel therapeutic target in the treatment of HF.


2017 ◽  
Vol 41 (3) ◽  
pp. 849-864 ◽  
Author(s):  
Yanqing Zhang ◽  
Pingping Liao ◽  
Meng’en Zhu ◽  
Wei Li ◽  
Dan Hu ◽  
...  

Background/Aims: Baicalin has been shown to be effective for various animal models of cardiovascular diseases, such as pulmonary hypertension, atherosclerosis and myocardial ischaemic injury. However, whether baicalin plays a role in cardiac hypertrophy remains unknown. Here we investigated the protective effects of baicalin on cardiac hypertrophy induced by pressure overload and explored the potential mechanisms involved. Methods: C57BL/6J-mice were treated with baicalin or vehicle following transverse aortic constriction or Sham surgery for up to 8 weeks, and at different time points, cardiac function and heart size measurement and histological and biochemical examination were performed. Results: Mice under pressure overload exhibited cardiac dysfunction, high mortality, myocardial hypertrophy, increased apoptosis and fibrosis markers, and suppressed cardiac expression of PPARα and PPARβ/δ. However, oral administration of baicalin improved cardiac dysfunction, decreased mortality, and attenuated histological and biochemical changes described above. These protective effects of baicalin were associated with reduced heart and cardiomyocyte size, lower fetal genes expression, attenuated cardiac fibrosis, lower expression of profibrotic markers, and decreased apoptosis signals in heart tissue. Moreover, we found that baicalin induced PPARα and PPARβ/δ expression in vivo and in vitro. Subsequent experiments demonstrated that long-term baicalin treatment presented no obvious cardiac lipotoxicity. Conclusions: The present results demonstrated that baicalin attenuates pressure overload induced cardiac dysfunction and ventricular remodeling, which would be due to suppressed cardiac hypertrophy, fibrosis, apoptosis and metabolic abnormality.


2011 ◽  
Vol 301 (5) ◽  
pp. C1046-C1056 ◽  
Author(s):  
Serban P. Georgescu ◽  
Mark J. Aronovitz ◽  
Juan L. Iovanna ◽  
Richard D. Patten ◽  
John M. Kyriakis ◽  
...  

Left ventricular remodeling, including the deposition of excess extracellular matrix, is key to the pathogenesis of heart failure. The stress-inducible transcriptional regulator p8 is increased in failing human hearts and is required both for agonist-stimulated cardiomyocyte hypertrophy and for cardiac fibroblasts matrix metalloprotease-9 (MMP9) induction. In the heart, upregulation of autophagy is an adaptive response to stress and plays a causative role in cardiomyopathies. We have recently shown that p8 ablation in cardiac cells upregulates autophagy and that, in vivo, loss of p8 results in a decrease of cardiac function. Here we investigated the effects of p8 genetic deletion in mediating adverse myocardial remodeling. Unstressed p8−/− mouse hearts manifested complex alterations in the expression of fibrosis markers. In addition, these mice displayed elevated autophagy and apoptosis compared with p8+/+ mice. Transverse aortic constriction (TAC) induced left ventricular p8 expression in p8+/+ mice. Pressure overload caused left ventricular remodeling in both genotypes, however, p8−/− mice showed less cardiac fibrosis induction. Consistent with this, although MMP9 induction was attenuated in the p8−/− mice, induction of MMP2 and MMP3 were strikingly upregulated while TIMP2 was downregulated. Left ventricular autophagy increased after TAC and was significantly higher in the p8−/− mice. Thus p8-deletion results in reduced collagen fibrosis after TAC, but in turn, is associated with a detrimental higher increase in autophagy. These findings suggest a role for p8 in regulating in vivo key signaling pathways involved in the pathogenesis of heart failure.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Sarah M Schumacher-Bass ◽  
Erhe Gao ◽  
Kurt Chuprun ◽  
Jessica I Gold ◽  
Walter J Koch

During heart failure (HF), cardiac levels and activity of the G protein-coupled receptor (GPCR) kinase (GRK) GRK2 are elevated, increasing phosphorylation, desensitization and down-regulation of β-adrenergic receptors (βARs) and other cardiac GPCRs. Increased GRK2 has been shown to participate in adverse remodeling and contractile dysfunction during HF, while GRK2 inhibition via a carboxy-terminal peptide, βARKct, enhances heart function and can prevent HF development. Mounting evidence supports the idea of a dynamic GRK2 “interactome” in which GRK2 can uncouple GPCRs via novel protein-protein interactions. Several novel GRK2 interacting partners are important for adaptive and maladaptive myocyte growth including Gq, the signaling trigger for maladaptive cardiac hypertrophy, leading to HF. Importantly, GRK2 contains a putative amino-terminal Regulator of G protein Signaling (RGS) domain (termed βARK-RGS). This domain directly interacts with Gq and appears to inhibit signaling without altering Gq enzymatic activity. Therefore, this domain of GRK2 may alter hypertrophic responses in the heart and represent a novel role for GRK2 and also a potential therapeutic target to limit maladaptive cardiac hypertrophy. We have begun to address this by generation of novel transgenic mice with cardiac-specific expression of the RGS domain of GRK2. Data from mice with cardiac expression of βARK-RGS demonstrate anti-hypertrophic effects in a trans-aortic constriction (TAC) model of pressure overload hypertrophy. Echocardiographic analysis post-TAC revealed reduced left ventricular posterior wall thickness in βARK-RGS compared to non-transgenic littermate controls (1.34 vs 1.57 mm LVPWd at 4 weeks). RT-PCR analysis found decreased hypertrophic factor transcripts, such as ANF for which the nearly 18-fold increase post TAC was completely inhibited in βARK-RGS mice. Other hypertrophic phenotypic markers have been studied and mechanistic characterization is underway. These data support our hypothesis that the RGS domain of GRK2 may serve as a non-canonical inhibitor of Gq-mediated hypertrophic signaling in the heart and highlight how this research may pave the way for novel GRK2-based therapeutic approaches to prevent hypertrophy and HF.


Sign in / Sign up

Export Citation Format

Share Document