Anoxia-Reoxygenation Stimulates Collagen Type-I and MMP-1 Expression in Cardiac Fibroblasts

2004 ◽  
Vol 44 (6) ◽  
pp. 682-687 ◽  
Author(s):  
Kui Chen ◽  
Dayuan Li ◽  
Xingjian Zhang ◽  
Paul L. Hermonat ◽  
Jawahar L. Mehta
2007 ◽  
Vol 460 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Huijie Zhang ◽  
Rongbiao Pi ◽  
Ruifang Li ◽  
Ping Wang ◽  
Futian Tang ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaoyu Gu ◽  
Tingting Fang ◽  
Pinfang Kang ◽  
Junfeng Hu ◽  
Ying Yu ◽  
...  

Our study aimed firstly to observe whether ALDH2 was expressed in neonate rat cardiac fibroblasts, then to investigate the effect of activation of ALDH2 on oxidative stress, apoptosis, and fibrosis when cardiac fibroblasts were subjected to high glucose intervention. Cultured cardiac fibroblasts were randomly divided into normal (NG), NG + Alda-1, high glucose (HG), HG + Alda-1, HG + Alda-1 + daidzin, HG + daidzin, and hypertonic groups. Double-label immunofluorescence staining, RT-PCR, and Western blot revealed ALDH2 was expressed in cardiac fibroblasts. Compared with NG, ALDH2 activity and protein expression were reduced, and cardiac fibroblast proliferation, ROS releasing, 4-HNE protein expression, collagen type I and III at mRNA levels, and the apoptosis rate were increased in HG group. While in HG + Alda-1 group, with the increases of ALDH2 activity and protein expression, the cardiac fibroblast proliferation and ROS releasing were decreased, and 4-HNE protein expression, collagen type I and III at mRNA levels, and apoptosis rate were reduced compared with HG group. When treated with daidzin in HG + Alda-1 group, the protective effects were inhibited. Our findings suggested that ALDH2 is expressed in neonate rat cardiac fibroblasts; activation of ALDH2 decreases the HG-induced apoptosis and fibrosis through inhibition of oxidative stress.


2018 ◽  
Vol 315 (4) ◽  
pp. H802-H813 ◽  
Author(s):  
Guohua Li ◽  
Wenjuan Xing ◽  
Min Zhang ◽  
Fenghao Geng ◽  
Hongyan Yang ◽  
...  

Diabetic cardiac fibrosis increases ventricular stiffness and facilitates the occurrence of diastolic dysfunction. Our previous studies have shown that berberine, a natural alkaloid, attenuates cardiac ischemia-reperfusion injury in diabetic rats. The aim of present study was to investigate the effects of long-term berberine treatment on cardiac remodeling in diabetic rats and the underlying mechanisms. Diabetic rats induced by low-dose streptozotocin injection combined with 8 wk of high-fat diet displayed significant cardiac matrix collagen deposition and dysfunction, whereas berberine administration (200 mg·kg−1·day−1, gavage 4 wk) significantly ameliorated cardiac fibrosis and dysfunction and reduced cardiac IGF-1 receptor (IGF-1R) expression in diabetic rats. Interestingly, IGF-1R expression was upregulated in cardiac fibroblasts isolated from diabetic hearts or cultured in high-glucose conditions (30 mM). High glucose treatment or IGF-1R overexpression increased matrix metalloproteinase (MMP)-2/MMP-9 expression, α-smooth muscle actin (α-SMA), and collagen type I expression in cardiac fibroblasts. In contrast, berberine treatment significantly inhibited IGF-1R expression and exerted an antifibrotic effect in high glucose-cultured cardiac fibroblasts, as manifested by decreased MMP-2/MMP-9, α-SMA, and collagen type I expression, whereas IGF-1R siRNA plus berberine treatment did not further enhance this antifibrotic effect compared with berberine treatment alone. Taken together, long-term berberine treatment ameliorates cardiac fibrosis and dysfunction by downregulating IGF-1R expression in cardiac fibroblasts and subsequently reducing MMP-2/MMP-9, α-SMA, and collagen type I expression in diabetic hearts. The findings suggest the therapeutic potential of berberine for diabetic cardiomyopathy associated with cardiac fibrosis. NEW & NOTEWORTHY Berberine downregulated IGF-1 receptor expression and matrix metalloproteinase-2/matrix metalloproteinase-9 levels in cardiac fibroblasts and thus inhibited fibroblast differentiation and collagen overproduction in diabetic hearts, suggesting a novel mechanism for antifibrotic cardioprotection of berberine in type 2 diabetes.


2021 ◽  
Author(s):  
Allen Sam Titus ◽  
Harikrishnan V ◽  
Mingyi Wang ◽  
Edward G Lakkatta ◽  
Shivakumar Kailasam

Fibronectin is an extracellular matrix glycoprotein with a regulatory role in fundamental cellular processes. Recent reports on the cardioprotective effect of fibronectin inhibition in a setting of myocardial injury suggest a role for fibronectin in cardiac fibroblast function, which remains largely unexplored. This study probed the molecular basis and functional implications of fibronectin gene expression in cardiac fibroblasts exposed to Angiotensin II, a potent pro-fibrotic factor in the myocardium. Using gene knockdown and over-expression approaches, western blotting and promoter pull-down assay, we show that collagen type I-activated Discoidin Domain Receptor 2 (DDR2) mediates Angiotensin II-stimulated transcriptional up-regulation of fibronectin expression by Yes-activated Protein in cardiac fibroblasts. Further, siRNA-mediated fibronectin knockdown attenuated Angiotensin II-dependent expression of anti-apoptotic cIAP2 and promoted cell death under oxidative stress. Fibronectin was also found to mediate Angiotensin II-stimulated collagen type I expression. Importantly, an obligate role for fibronectin was observed in Angiotensin II-stimulated expression of its receptor, AT1R, which would link ECM signalling and Angiotensin II signalling in cardiac fibroblasts. Moreover, the regulatory role of DDR2-dependent fibronectin expression in Ang II-stimulated cIAP2, collagen type I and AT1R expression was mediated by Integrin-β1-integrin-linked kinase signalling. The pro-survival role of fibronectin in cardiac fibroblasts and its regulatory role in collagen and AT1R expression, downstream of DDR2, could be critical determinants of cardiac fibroblast-mediated wound healing following myocardial injury. Our findings point to a complex mechanism of regulation of cardiac fibroblast function involving two major extracellular matrix proteins, collagen type I and fibronectin, and their receptors, DDR2 and Integrin-β1.


2020 ◽  
Vol 21 (15) ◽  
pp. 5372
Author(s):  
Jaime Ibarrola ◽  
Mattie Garaikoetxea ◽  
Amaia Garcia-Peña ◽  
Lara Matilla ◽  
Eva Jover ◽  
...  

Mitral valve prolapse (MVP) patients develop myocardial fibrosis that is not solely explained by volume overload, but the pathophysiology has not been defined. Mineralocorticoid receptor antagonists (MRAs) improve cardiac function by decreasing cardiac fibrosis in other heart diseases. We examined the role of MRA in myocardial fibrosis associated with myxomatous degeneration of the mitral valve. Myocardial fibrosis has been analyzed in a mouse model of mitral valve myxomatous degeneration generated by pharmacological treatment with Nordexfenfluramine (NDF) in the presence of the MRA spironolactone. In vitro, adult human cardiac fibroblasts were treated with NDF and spironolactone. In an experimental mouse, MRA treatment reduced interstitial/perivascular fibrosis and collagen type I deposition. MRA administration blunted NDF-induced cardiac expression of vimentin and the profibrotic molecules galectin-3/cardiotrophin-1. In parallel, MRA blocked the increase in cardiac non-fibrillar proteins such as fibronectin, aggrecan, decorin, lumican and syndecan-4. The following effects are blocked by MRA: in vitro, in adult human cardiac fibroblasts, NDF-treatment-induced myofibroblast activation, collagen type I and proteoglycans secretion. Our findings demonstrate, for the first time, the contribution of the mineralocorticoid receptor (MR) to the development of myocardial fibrosis associated with mitral valve myxomatous degeneration. MRA could be a therapeutic approach to reduce myocardial fibrosis associated with MVP.


Sign in / Sign up

Export Citation Format

Share Document