TIBIALIS ANTERIOR FASCICLE LENGTH AND PENNATION ANGLE DURING SUBMAXIMAL CONCENTRIC, ECCENTRIC, AND ISOMETRIC ACTIONS

2003 ◽  
Vol 35 (Supplement 1) ◽  
pp. S383
Author(s):  
E S. Lenko ◽  
A R. Trem ◽  
S P. Johnson ◽  
G S. Chleboun
2015 ◽  
Vol 118 (8) ◽  
pp. 953-964 ◽  
Author(s):  
Javier Rodriguez-Falces ◽  
Jacques Duchateau ◽  
Yoshiho Muraoka ◽  
Stéphane Baudry

The study was undertaken to provide insight into the mechanisms underlying the potentiation of the muscle compound action potential (M wave) after conditioning contractions. M waves were evoked in the tibialis anterior before and after isometric maximal voluntary contractions (MVC) of 1, 3, 6, 10, 30, and 60 s, and after 3-s contractions at 10, 30, 50, 70, 90, and 100% MVC. The amplitude, duration, and area of the first and second phases of the M wave, together with the median frequency (Fmedian) and muscle fiber conduction velocity (MFCV) were recorded. Furthermore, twitch force, muscle fascicle length, and pennation angle were measured at rest, before, and 1 s after the conditioning contractions. The results indicate that only the amplitude of the second phase of the M wave was significantly increased after conditioning contractions. The extent of this potentiation was similar for MVC durations ranging from 1 to 10 s and augmented progressively with contraction intensity from 30 to 70% MVC. After these conditioning contractions, the duration and area of the two M-wave phases decreased ( P < 0.05), whereas MFCV and Fmedian increased ( P < 0.05). For all of these parameters, the greatest changes occurred 1 s after the conditioning contraction. Changes in MFCV after the contractions were correlated with those in M-wave second-phase amplitude ( r2 = 0.42; P < 0.05) and Fmedian ( r2 = 0.53; P < 0.05). In contrast, fascicle length and pennation angle did not change after the conditioning contractions. It is concluded that the potentiation of the second phase of the M wave is mainly due to an increased MFCV.


PLoS ONE ◽  
2017 ◽  
Vol 12 (12) ◽  
pp. e0189036 ◽  
Author(s):  
Diptasree Maitra Ghosh ◽  
Dinesh Kumar ◽  
Sridhar Poosapadi Arjunan ◽  
Ariba Siddiqi ◽  
Ramakrishnan Swaminathan

2008 ◽  
Vol 28 ◽  
pp. S114-S115
Author(s):  
N. Aggeloussis ◽  
E. Giannakou ◽  
K. Albracht ◽  
A. Arampatzis

1998 ◽  
Vol 85 (4) ◽  
pp. 1230-1235 ◽  
Author(s):  
Masamitsu Ito ◽  
Yasuo Kawakami ◽  
Yoshiho Ichinose ◽  
Senshi Fukashiro ◽  
Tetsuo Fukunaga

Fascicle length, pennation angle, and tendon elongation of the human tibialis anterior were measured in vivo by ultrasonography. Subjects ( n = 9) were requested to develop isometric dorsiflexion torque gradually up to maximal at the ankle joint angle of 20° plantarflexion from the anatomic position. Fascicle length shortened from 90 ± 7 to 76 ± 7 (SE) mm, pennation angle increased from 10 ± 1 to 12 ± 1°, and tendon elongation increased up to 15 ± 2 mm with graded force development up to maximum. The tendon stiffness increased with increasing tendon force from 10 N/mm at 0–20 N to 32 N/mm at 240–260 N. Young’s modulus increased from 157 MPa at 0–20 N to 530 MPa at 240–260 N. It can be concluded that, in isometric contractions of a human muscle, mechanical work, some of which is absorbed by the tendinous tissue, is generated by the shortening of muscle fibers and that ultrasonography can be used to determine the stiffness and Young’s modulus for human tendons.


Sports ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 29 ◽  
Author(s):  
Ioli Panidi ◽  
Gregory C. Bogdanis ◽  
Vasiliki Gaspari ◽  
Polyxeni Spiliopoulou ◽  
Anastasia Donti ◽  
...  

Gastrocnemius medialis (GM) architecture and ankle angle were compared between flexibility trained (n = 10) and not trained (n = 6) female athletes, aged 8–10 years. Ankle angle, fascicle length, pennation angle and muscle thickness were measured at the mid-belly and the distal part of GM, at rest and at the end of one min of static stretching. Flexibility trained (FT) and not trained athletes (FNT) had similar fascicle length at the medial (4.19 ± 0.37 vs. 4.24 ± 0.54 cm, respectively, p = 0.841) and the distal part of GM (4.25 ± 0.35 vs. 4.18 ± 0.65 cm, respectively, p = 0.780), similar pennation angles, and muscle thickness (p > 0.216), and larger ankle angle at rest (120.9 ± 4.2 vs. 110.9 ± 5.8°, respectively, p = 0.001). During stretching, FT displayed greater fascicle elongation compared to FNT at the medial (+1.67 ± 0.37 vs. +1.28 ± 0.22 cm, respectively, p = 0.048) and the distal part (+1.84 ± 0.67 vs. +0.97 ± 0.97 cm, respectively, p = 0.013), larger change in joint angle and muscle tendon junction displacement (MTJ) (p < 0.001). Muscle thickness was similar in both groups (p > 0.053). Ankle dorsiflexion angle significantly correlated with fascicle elongation at the distal part of GM (r = −0.638, p < 0.01) and MTJ displacement (r = −0.610, p < 0.05). Collectively, FT had greater fascicle elongation at the medial and distal part of GM and greater MTJ displacement during stretching than FNT of similar age.


2010 ◽  
Vol 31 (1) ◽  
pp. 73-77 ◽  
Author(s):  
Nickos Aggeloussis ◽  
Erasmia Giannakou ◽  
Kirsten Albracht ◽  
Adamantios Arampatzis

2018 ◽  
Vol 119 (2) ◽  
pp. 563-572 ◽  
Author(s):  
P. Valadão ◽  
S. Kurokawa ◽  
T. Finni ◽  
J. Avela

This study investigated whether the specific motor control strategy reported for eccentric muscle actions is dependent on muscle mechanical behavior. Motor evoked potentials, Hoffman reflex (H-reflex), fascicle length, pennation angle, and fascicle velocity of soleus muscle were compared between isometric and two eccentric conditions. Ten volunteers performed maximal plantarflexion trials in isometric, slow eccentric (25°/s), and fast eccentric (100°/s) conditions, each in a different randomized testing session. H-reflex normalized by the preceding M wave (H/M) was depressed in both eccentric conditions compared with isometric ( P < 0.001), while no differences in fascicle length and pennation angle were found among conditions. Furthermore, although the fast eccentric condition had greater fascicle velocity than slow eccentric ( P = 0.001), there were no differences in H/M. There were no differences in motor evoked potential size between conditions, and silent period was shorter for both eccentric conditions compared with isometric ( P = 0.009). Taken together, the present results corroborate the hypothesis that the central nervous system has an unique activation strategy during eccentric muscle actions and suggest that sensory feedback does not play an important role in modulating these muscle actions. NEW & NOTEWORTHY The present study provides new insight into the motor control of eccentric muscle actions. It was demonstrated that task-dependent corticospinal excitability modulation does not seem to depend on sensory information processing. These findings support the hypothesis that the central nervous system has a unique activation strategy during eccentric muscle actions.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2260 ◽  
Author(s):  
Brent J. Raiteri ◽  
Andrew G. Cresswell ◽  
Glen A. Lichtwark

Background.Muscles not only shorten during contraction to perform mechanical work, but they also bulge radially because of the isovolumetric constraint on muscle fibres. Muscle bulging may have important implications for muscle performance, however quantifying three-dimensional (3D) muscle shape changes in human muscle is problematic because of difficulties with sustaining contractions for the duration of anin vivoscan. Although two-dimensional ultrasound imaging is useful for measuring local muscle deformations, assumptions must be made about global muscle shape changes, which could lead to errors in fully understanding the mechanical behaviour of muscle and its surrounding connective tissues, such as aponeurosis. Therefore, the aims of this investigation were (a) to determine the intra-session reliability of a novel 3D ultrasound (3DUS) imaging method for measuringin vivohuman muscle and aponeurosis deformations and (b) to examine how contraction intensity influencesin vivohuman muscle and aponeurosis strains during isometric contractions.Methods.Participants (n= 12) were seated in a reclined position with their left knee extended and ankle at 90° and performed isometric dorsiflexion contractions up to 50% of maximal voluntary contraction. 3DUS scans of the tibialis anterior (TA) muscle belly were performed during the contractions and at rest to assess muscle volume, muscle length, muscle cross-sectional area, muscle thickness and width, fascicle length and pennation angle, and central aponeurosis width and length. The 3DUS scan involved synchronous B-mode ultrasound imaging and 3D motion capture of the position and orientation of the ultrasound transducer, while successive cross-sectional slices were captured by sweeping the transducer along the muscle.Results.3DUS was shown to be highly reliable across measures of muscle volume, muscle length, fascicle length and central aponeurosis length (ICC ≥ 0.98, CV < 1%). The TA remained isovolumetric across contraction conditions and progressively shortened along its line of action as contraction intensity increased. This caused the muscle to bulge centrally, predominantly in thickness, while muscle fascicles shortened and pennation angle increased as a function of contraction intensity. This resulted in central aponeurosis strains in both the transverse and longitudinal directions increasing with contraction intensity.Discussion.3DUS is a reliable and viable method for quantifying multidirectional muscle and aponeurosis strains during isometric contractions within the same session. Contracting muscle fibres do work in directions along and orthogonal to the muscle’s line of action and central aponeurosis length and width appear to be a function of muscle fascicle shortening and transverse expansion of the muscle fibres, which is dependent on contraction intensity. How factors other than muscle force change the elastic mechanical behaviour of the aponeurosis requires further investigation.


2019 ◽  
Author(s):  
John F Drazan ◽  
Todd J Hullfish ◽  
Josh R Baxter

Background. Ultrasound has become the gold-standard for making dynamic measurements of muscle structure during functional movements in biomechanical studies. Manual measurements of fascicle length and pennation angle are time intensive which limits the clinical utility of this approach while also limiting sample sizes. The purpose of this study was to develop a novel tracking paradigm to quantify individual fascicle length and pennation measurements during maximal voluntary contractions and demonstrate is repeatability between days and reproducibility between different examiners. Methods. Five healthy young adults performed maximal isokinetic contractions at 0, 30, 120, 210, and 500 degrees about their ankle on an isokinetic dynamometer while their gastrocnemius muscle was observed using ultrasound. Individual muscle fascicles were identified in the first frame, and tracked using the automatic fascicle tracking algorithm and a manual approach by three observers on three separate days. Repeatability within examiners across days and reproducibility across examiners and days was evaluated using intraclass correlation coefficients. Agreement between manual and automatic tracking was evaluated using the coefficient of multiple correlations. Supervised automatic tracking was performed on all videos by one examiner to evaluate the fidelity of automatic tracking in practice. Results. We found both manual and automatic measurements of fascicle length and pennation angle to be strongly repeatable within examiners and strongly reproducible across examiners and days (ICCs>0.76). There was greater agreement between manual and automatic measurements of fascicle length than pennation angle, however the mean CMC value for both was still found to be strong in both cases (CMC>0.8). Supervision of automatic tracking greatly showed very strong agreement between manual and automatic measurements of fascicle length and pennation angle (CMC>0.94). Conclusions. We have developed a novel automatic fascicle tracking algorithm that quantifies fascicle length and pennation angle of individual muscle fascicles during dynamic contractions across a range of velocities. We demonstrated that this fascicle tracking algorithm is repeatable and reproducible across different examiners and different days and showed strong agreement with manual measurements, especially when tracking is supervised by the user so that tracking can be reinitialized if poor tracking fidelity is observed.


Sign in / Sign up

Export Citation Format

Share Document