scholarly journals Variant chromosome 1 reveals centromeric DNA sequences within the lqh region

2000 ◽  
Vol 2 (1) ◽  
pp. 103-103
Author(s):  
R A Conte ◽  
R S Verma
Genome ◽  
1992 ◽  
Vol 35 (4) ◽  
pp. 621-626 ◽  
Author(s):  
Peter M. Rogowsky ◽  
Ken W. Shepherd ◽  
Peter Langridge

A novel type of polymerase chain reaction (PCR) marker was developed for the mapping of cereal rye (Secale cereale). Primer pairs were synthesized targeting the insertion sites of three individual copies of the R173 family of rye specific repeated DNA sequences. While one primer was derived from a sequence within the respective R173 element, the second primer corresponded to a flanking region. The complex banding patterns obtained in rye allowed not only the mapping of the three R173 elements to certain chromosome regions of 1RS (the short arm of rye chromosome 1) but also the mapping of an additional 3–10 easily identifiable bands per primer pair to other rye chromosomes. Linkage mapping of a polymorphic 1R band derived from three rye cultivars demonstrated the presence of nonallelic, dominant markers in two independent crosses. Because of the high copy number of the R173 family (15 000 copies per diploid rye genome), its dispersion over the entire length of all chromosomes and the high number of markers obtained per primer pair, PCR markers based on the R173 family provide an almost unlimited source for well-spaced markers in rye mapping.Key words: polymerase chain reaction, mapping, repetitive DNA sequences, wheat, rye.


1996 ◽  
Vol 109 (9) ◽  
pp. 2199-2206
Author(s):  
A.R. Mitchell ◽  
P. Jeppesen ◽  
L. Nicol ◽  
H. Morrison ◽  
D. Kipling

Chromosome 1 of the inbred mouse strain DBA/2 has a polymorphism associated with the minor satellite DNA at its centromere. The more terminal block of satellite DNA sequences on this chromosome acts as the centromere as shown by the binding of CREST ACA serum, anti-CENP-B and anti-CENP-E polyclonal sera. Demethylation of the minor satellite DNA sequences accomplished by growing cells in the presence of the drug 5-aza-2′-deoxycytidine results in a redistribution of the CENP-B protein. This protein now binds to an enlarged area on the more terminal block and in addition it now binds to the more internal block of minor satellite DNA sequences on chromosome 1. The binding of the CENP-E protein does not appear to be affected by demethylation of the minor satellite sequences. We present a model to explain these observations. This model may also indicate the mechanism by which the CENP-B protein recognises specific sites within the arrays of minor satellite DNA on mouse chromosomes.


2015 ◽  
Vol 112 (11) ◽  
pp. E1263-E1271 ◽  
Author(s):  
Yalin Liu ◽  
Handong Su ◽  
Junling Pang ◽  
Zhi Gao ◽  
Xiu-Jie Wang ◽  
...  

The ability of centromeres to alternate between active and inactive states indicates significant epigenetic aspects controlling centromere assembly and function. In maize (Zea mays), misdivision of the B chromosome centromere on a translocation with the short arm of chromosome 9 (TB-9Sb) can produce many variants with varying centromere sizes and centromeric DNA sequences. In such derivatives of TB-9Sb, we found a de novo centromere on chromosome derivative 3-3, which has no canonical centromeric repeat sequences. This centromere is derived from a 288-kb region on the short arm of chromosome 9, and is 19 megabases (Mb) removed from the translocation breakpoint of chromosome 9 in TB-9Sb. The functional B centromere in progenitor telo2-2 is deleted from derivative 3-3, but some B-repeat sequences remain. The de novo centromere of derivative 3-3 becomes inactive in three further derivatives with new centromeres being formed elsewhere on each chromosome. Our results suggest that de novo centromere initiation is quite common and can persist on chromosomal fragments without a canonical centromere. However, we hypothesize that when de novo centromeres are initiated in opposition to a larger normal centromere, they are cleared from the chromosome by inactivation, thus maintaining karyotype integrity.


1993 ◽  
Vol 106 (1) ◽  
pp. 79-85 ◽  
Author(s):  
A.R. Mitchell ◽  
L. Nicol ◽  
P. Malloy ◽  
D. Kipling

Chromosome 1 of the inbred mouse strain DBA/2 shows an unusual polymorphism associated with its centromeric satellite DNA sequences. The minor satellite array has undergone amplification and is present as two blocks separated by major satellite sequences. Both minor satellite blocks appear to carry the sequence motif necessary for CENP-B protein binding. Despite this apparent similarity the functional centromere, as defined by the location of CREST antigens, appears to form only within the more terminal block. The two blocks also vary in that sister chromatid association only occurs with this more terminal block.


2005 ◽  
Vol 16 (4) ◽  
pp. 1800-1810 ◽  
Author(s):  
Nathaniel S. Edwards ◽  
Andrew W. Murray

Kinetochores are the proteinaceous complexes that assemble on centromeric DNA and direct eukaryotic chromosome segregation. The mechanisms by which higher eukaryotic cells define centromeres are poorly understood. Possible molecular contributors to centromere specification include the underlying DNA sequences and epigenetic factors such as binding of the centromeric histone centromere protein A (CENP-A). Frog egg extracts are an attractive system for studying centromere definition and kinetochore assembly. To facilitate such studies, we cloned a Xenopus laevis homologue of CENP-A (XCENP-A). We identified centromere-associated DNA sequences by cloning fragments of DNA that copurified with XCENP-A by chromatin immunoprecipitation. XCENP-A associates with frog centromeric repeat 1 (Fcr1), a 174-base pair repeat containing a possible CENP-B box. Southern blots of partially digested genomic DNA revealed large ordered arrays of Fcr1 in the genome. Fluorescent in situ hybridization with Fcr1 probes stained most centromeres in cultured cells. By staining lampbrush chromosomes, we specifically identified the 11 (of 18) chromosomes that stain consistently with Fcr1 probes.


mBio ◽  
2021 ◽  
Author(s):  
Alexander Lorenz ◽  
Nicolas Papon

2009 saw the first description of Candida auris , a yeast pathogen of humans. C. auris has since grown into a global problem in intensive care settings, where it causes systemic infections in patients with underlying health issues. Recent whole-genome sequencing has discerned five C. auris clades with distinct phenotypic features which display genomic divergence on a DNA sequence and a chromosome structure level.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245128
Author(s):  
Gislayne de Paula Bueno ◽  
Kaleb Pretto Gatto ◽  
Camilla Borges Gazolla ◽  
Peterson T. Leivas ◽  
Michelle M. Struett ◽  
...  

Cycloramphus bolitoglossus (Werner, 1897) is a rare species with a low population density in the Serra do Mar region of Paraná and Santa Catarina, in southern Brazil. Currently, it has been assigned to the Near Threatened (NT) category in the Brazilian List of Endangered Animal Species. Here, we described the karyotype of this species for the first time and investigated the patterns of some repetitive DNA classes in the chromosomes using molecular cytogenetic approaches. We isolated, sequenced and mapped the 5S rDNA and the satellite DNA PcP190 of C. bolitoglossus, as well as mapped the telomeric sequences and seven microsatellites motifies [(GA)15, (CA)15, (GACA)4, (GATA)8, (CAG)10, (CGC)10, and (GAA)]10. Cycloramphus bolitoglossus has 2n = 26 chromosomes and a fundamental number (FN) equal to 52, with a highly conserved karyotype compared to other genus members. Comparative cytogenetic under the phylogenetic context of genus allowed evolutionary interpretations of the morphological changes in the homologs of pairs 1, 3, and 6 along with the evolutionary history of Cycloramphus. Two subtypes of 5S rDNA type II were isolated in C. bolitoglossus genome, and several comparative analysis suggests mixed effects of concerted and birth-and-death evolution acting in this repetitive DNA. The 5S rDNA II subtype “a” and “b” was mapped on chromosome 1. However, their different position along chromosome 1 provide an excellent chromosome marker for future studies. PcP190 satellite DNA, already reported for species of the families Hylidae, Hylodidae, Leptodactylidae, and Odontophrynidae, is scattered throughout the C. bolitoglossus genome, and even non-heterochromatic regions showed hybridization signals using the PcP190 probe. Molecular analysis suggests that PcP190 satellite DNA exhibit a high-level of homogenization of this sequence in the genome of C. bolitoglossus. The PcP190 satDNA from C. bolitoglossus represents a novel sequence group, compared to other anurans, based on its hypervariable region. Overall, the present data on repetitive DNA sequences showed pseudogenization evidence and corroborated the hypothesis of the emergence of satDNA from rDNA 5S clusters. These two arguments that reinforced the importance of the birth-and-death evolutionary model to explain 5S rDNA patterns found in anuran genomes.


Sign in / Sign up

Export Citation Format

Share Document