Quantity and Conformation of Lysozyme Deposited on Conventional and Silicone Hydrogel Contact Lens Materials Using an In Vitro Model

2007 ◽  
Vol 33 (3) ◽  
pp. 138-143 ◽  
Author(s):  
Maciej Suwala ◽  
Mary-Ann Glasier ◽  
Lakshman N. Subbaraman ◽  
Lyndon Jones
2007 ◽  
Vol 52 (1) ◽  
pp. 171-182 ◽  
Author(s):  
Yoshifumi Imamura ◽  
Jyotsna Chandra ◽  
Pranab K. Mukherjee ◽  
Ali Abdul Lattif ◽  
Loretta B. Szczotka-Flynn ◽  
...  

ABSTRACT Fungal keratitis is commonly caused by Fusarium species and less commonly by Candida species. Recent outbreaks of Fusarium keratitis were associated with contact lens wear and with ReNu with MoistureLoc contact lens care solution, and biofilm formation on contact lens/lens cases was proposed to play a role in this outbreak. However, no in vitro model for contact lens-associated fungal biofilm has been developed. In this study, we developed and characterized in vitro models of biofilm formation on various soft contact lenses using three species of Fusarium and Candida albicans. The contact lenses tested were etafilcon A, galyfilcon A, lotrafilcon A, balafilcon A, alphafilcon A, and polymacon. Our results showed that clinical isolates of Fusarium and C. albicans formed biofilms on all types of lenses tested and that the biofilm architecture varied with the lens type. Moreover, differences in hyphal content and architecture were found between the biofilms formed by these fungi. We also found that two recently isolated keratitis-associated fusaria formed robust biofilms, while the reference ATCC 36031 strain (recommended by the International Organization for Standardization guidelines for testing of disinfectants) failed to form biofilm. Furthermore, using the developed in vitro biofilm model, we showed that phylogenetically diverse planktonic fusaria and Candida were susceptible to MoistureLoc and MultiPlus. However, Fusarium biofilms exhibited reduced susceptibility against these solutions in a species- and time-dependent manner. This in vitro model should provide a better understanding of the biology and pathogenesis of lens-related fungal keratitis.


Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Gholamreza Esmaeeli Djavid

Abstract. Wound healing consists of a series of highly orderly overlapping processes characterized by hemostasis, inflammation, proliferation, and remodeling. Prolongation or interruption in each phase can lead to delayed wound healing or a non-healing chronic wound. Vitamin A is a crucial nutrient that is most beneficial for the health of the skin. The present study was undertaken to determine the effect of vitamin A on regeneration, angiogenesis, and inflammation characteristics in an in vitro model system during wound healing. For this purpose, mouse skin normal fibroblast (L929), human umbilical vein endothelial cell (HUVEC), and monocyte/macrophage-like cell line (RAW 264.7) were considered to evaluate proliferation, angiogenesis, and anti-inflammatory responses, respectively. Vitamin A (0.1–5 μM) increased cellular proliferation of L929 and HUVEC (p < 0.05). Similarly, it stimulated angiogenesis by promoting endothelial cell migration up to approximately 4 fold and interestingly tube formation up to 8.5 fold (p < 0.01). Furthermore, vitamin A treatment was shown to decrease the level of nitric oxide production in a dose-dependent effect (p < 0.05), exhibiting the anti-inflammatory property of vitamin A in accelerating wound healing. These results may reveal the therapeutic potential of vitamin A in diabetic wound healing by stimulating regeneration, angiogenesis, and anti-inflammation responses.


2011 ◽  
Vol 71 (05) ◽  
Author(s):  
M Salama ◽  
K Winkler ◽  
KF Murach ◽  
S Hofer ◽  
L Wildt ◽  
...  

2020 ◽  
Author(s):  
H Gaitantzi ◽  
C Cai ◽  
S Asawa ◽  
K Böttcher ◽  
M Ebert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document