scholarly journals 511 Role of NLR (Nucleotide Oligomerization Domain (NOD)—like Receptor) on Allergic Inflammation in a Mouse Model of Allergic Rhinitis

2012 ◽  
Vol 5 ◽  
pp. S162
Author(s):  
Soo Whan Kim ◽  
Ji-Hyeon Shin ◽  
Hyang Rim Park
2013 ◽  
Vol 91 (6) ◽  
pp. 428-434 ◽  
Author(s):  
Jaanki S. Purohit ◽  
Pan Hu ◽  
Guoxun Chen ◽  
Jay Whelan ◽  
Naima Moustaid-Moussa ◽  
...  

Obesity is associated with chronic inflammation. Toll-like receptors (TLR) and NOD-like receptors (NLR) are two families of pattern recognition receptors that play important roles in the immune response and inflammation in adipocytes. Activation of TLR4 has been shown to stimulate lipolysis from adipose tissue or adipocytes. However, effects of activation of nucleotide-oligomerization domain containing protein 1 (NOD1), one of the prominent members of NLRs, on adipocyte lipolysis have not been studied. Here we report that NOD1 activation by the synthetic ligands (Tri-DAP and C12-iEDAP) stimulated lipolysis in 3T3-L1 adipocytes in a time- and dose-dependent manner. C12-iEDAP-induced lipolysis was attenuated with NOD1 siRNA knockdown, demonstrating the specificity of the effects. Moreover, inhibition of the protein kinase A (PKA)/hormone sensitive lipase (HSL) and NF-κB pathways by the pharmacological inhibitors attenuated the lipolytic effects of C12-iEDAP. Furthermore, we show NOD1 activation induced PKA activation independent of cAMP production and inhibition of NF-κB pathways attenuated phosphorylation of selected PKA lipolytic targets (phosphorylation of Perilipin Ser 517 and HSL Ser 563). Taken together, our results demonstrate a novel role of NOD1 activation, via NF-κB/PKA lipolytic activation, in inducing lipolysis in adipocytes and suggest that NOD1 activation may contribute to dyslipidemia in obesity.


2018 ◽  
Author(s):  
Michael Eisenhut

BACKGROUND Bacillus calmette guerin (BCG) immunization has been associated with a reduction in Mycobacterium tuberculosis (MTB) infection. BCG immunization has been shown to enhance innate immunity. This effect of BCG can be explained by an enhancing effect on innate immunity. OBJECTIVE This study aimed to test the following hypotheses: (1) BCG immunization can prevent infection with MTB, (2) prevention of infection occurs via stimulation of NOD2 (nucleotide oligomerization domain) and toll-like receptors 2 (TLR2), and (3) the effect of BCG immunization on prevention of infection with MTB can be enhanced by giving stimulators of NOD2 and TLR2. METHODS To detect the influence of immunization on infection rates, the ultralow dose (ULD) infection model is used. The infection rate of mice vaccinated with BCG and exposed after 6 weeks to ULD of MTB and unvaccinated mice are compared via cultures of lung homogenates and interferon (IFN) gamma release assay. If a reduced infection rate by BCG immunization is confirmed, the experiment is repeated by giving BCG combined simultaneously or in time sequence with the enhancers of innate immunity murabutide or beta-glycan. The influence of murabutide or beta-glycan alone on infection rates is investigated. To quantify the contribution of innate immunity levels of tumor necrosis factor, IFN gamma expression, histone H3 K4me3 trimethylation, and concentrations of monocytes with features of activation of innate immunity as defined by the Ly6Chigh as well as CD11b positive phenotype in immunized versus unimmunized infected and uninfected mice in the various immunization protocols is compared. The experiments will be repeated with prior application of the inhibitors of epigenetic programming of innate immunity histone methyltransferase inhibitor 5’-deoxy-5’-methylthio-adenosine and histone acetyl transferase inhibitor epigallocatechin-3-gallate. The influence of BCG on innate immunity is further corroborated by a prospective observational study in human infants. RESULTS Investigations of derivatives of muramyl dipeptide (MDP) to enhance early immunity in the C57BL/6 mouse strain (mice aged 7 weeks) by another group used 300 micrograms per mouse of oil-associated 6-0-mycoloyl-N-acetylmuramyl-L-alanyl-D-isoglutamine (mycol-MDP) 50/50 mixed with Freund’s incomplete adjuvant. Comparison of colony-forming unit (CFU) count in the lungs 3 weeks after aerosol challenge with Mycobacterium bovis of groups (n=5) between groups receiving mycol-MDP in oil emulsion (see above) versus controls (n=5) showed a significantly lower CFU count of 94.5 x106 (SD 22.0) in cases versus controls with 204.0 X 106 (SD 77.6). It is important to note that after elimination of T-cells in this model, a reduction of CFU in lungs of mice treated with mycol-MDP persisted albeit without statistical significance, which was possibly related to the small number of animals used. CONCLUSIONS Demonstration of a reduction of MTB infection by enhancement of innate immunity could show a new approach to improving vaccine efficacy against this pathogen. INTERNATIONAL REGISTERED REPOR PRR1-10.2196/13045


1998 ◽  
Vol 12 (1) ◽  
pp. 3-8 ◽  
Author(s):  
Claus Bachert ◽  
Martin Wagenmann ◽  
Gabriele Holtappels

This review summarizes our current knowledge of nasal allergic inflammation based on studies of cytokines, chemokines, and adhesion molecules in allergic rhinitis. The article also includes some aspects of viral rhinitis. Due to artificial or natural allergen exposure, an increase in the number of eosinophils and basophils, mast cells, IgE-positive cells, macrophages, monocyte-like cells, Langerhans cells, and activated T-cells can be observed within the mucosa and on the mucosal surface. Mediators are known to be released in response to allergens, but do not seem to be adequate to initiate the cell recruitment. After antigen challenge, the release of proinflammatory and regulatory cytokines could be demonstrated, and TH2-type cytokine mRNA upregulation in allergic mucosa has been shown. Proinflammatory cytokines initiate an adhesion cascade and activate T-cells that create an “atopic” cytokine environment within the tissue, which also may be linked to the long-term selective recruitment of eosinophils. However, the acute selective migration of eosinophils after allergen challenge is not fully understood, nor is the role of chemokines in allergic and viral rhinitis. Allergic rhinitis clearly represents an inflammatory reaction.


Sign in / Sign up

Export Citation Format

Share Document