Exercise Training Preserves Coronary Flow and Reduces Infarct Size after Ischemia-Reperfusion in Rat Heart.

2004 ◽  
Vol 15 (1) ◽  
pp. 29
Author(s):  
D A Brown ◽  
K N Jew ◽  
G C Sparagna ◽  
T I Musch ◽  
R L Moore
2003 ◽  
Vol 95 (6) ◽  
pp. 2510-2518 ◽  
Author(s):  
David A. Brown ◽  
Korinne N. Jew ◽  
Genevieve C. Sparagna ◽  
Timothy I. Musch ◽  
Russell L. Moore

The effect of endurance training on the resistance of the heart to left ventricular (LV) functional deficit and infarction after a transient regional ischemia and subsequent reperfusion was examined. Female Sprague-Dawley rats were randomly assigned to an endurance exercise training (Tr) group or a sedentary (Sed) control group. After 20 wk of training, hearts were excised, perfused, and instrumented for assessment of LV mechanical function, and the left anterior descending coronary artery was occluded to induce a transient regional ischemia (1 h) that was followed by 2 h of reperfusion. Throughout much of the regional ischemia-reperfusion protocol, coronary flow rates, diastolic function, and LV developed pressure were better preserved in hearts from Tr animals. During the regional ischemia, coronary flow to myocardium outside the ischemic zone at risk (ZAR) was maintained in Tr hearts, whereas it progressively fell in Sed hearts. On release of the coronary artery ligature, flow to the ZAR was greater in Tr than in Sed hearts. Infarct size, expressed as a percentage of the ischemic ZAR, was significantly smaller in hearts from Tr rats (24 ± 3 vs. 32 ± 2% of ZAR, P < 0.05). Mn- and CuZn-SOD protein expression were higher in the LV myocardium of Tr animals ( P < 0.05 for both isoforms). Our data indicate that long-term exercise training leads to infarct sparing and better maintenance of coronary flow and mechanical function after ischemia-reperfusion.


2017 ◽  
Vol 122 (6) ◽  
pp. 1452-1461 ◽  
Author(s):  
Petra Alánová ◽  
Anna Chytilová ◽  
Jan Neckář ◽  
Jaroslav Hrdlička ◽  
Petra Míčová ◽  
...  

Chronic hypoxia and exercise are natural stimuli that confer sustainable cardioprotection against ischemia-reperfusion (I/R) injury, but it is unknown whether they can act in synergy to enhance ischemic resistance. Inflammatory response mediated by tumor necrosis factor-α (TNF-α) plays a role in the infarct size limitation by continuous normobaric hypoxia (CNH), whereas exercise is associated with anti-inflammatory effects. This study was conducted to determine if exercise training performed under conditions of CNH (12% O2) affects myocardial ischemic resistance with respect to inflammatory and redox status. Adult male Wistar rats were assigned to one of the following groups: normoxic sedentary, normoxic trained, hypoxic sedentary, and hypoxic trained. ELISA and Western blot analysis, respectively, were used to quantify myocardial cytokines and the expression of TNF-α receptors, nuclear factor-κB (NF-κB), and selected components of related signaling pathways. Infarct size and arrhythmias were assessed in open-chest rats subjected to I/R. CNH increased TNF-α and interleukin-6 levels and the expression of TNF-α type 2 receptor, NF-κB, inducible nitric oxide synthase (iNOS), cytosolic phospholipase A2α, cyclooxygenase-2, manganese superoxide dismutase (MnSOD), and catalase. None of these effects occurred in the normoxic trained group, whereas exercise in hypoxia abolished or significantly attenuated CNH-induced responses, except for NF-κB, iNOS, and MnSOD. Both CNH and exercise reduced infarct size, but their combination provided the same degree of protection as CNH alone. In conclusion, exercise training does not amplify the cardioprotection conferred by CNH. High ischemic tolerance of the CNH hearts persists after exercise, possibly by maintaining the increased antioxidant capacity despite attenuating TNF-α-dependent protective signaling. NEW & NOTEWORTHY Chronic hypoxia and regular exercise are natural stimuli that confer sustainable myocardial protection against acute ischemia-reperfusion injury. Signaling mediated by TNF-α via its type 2 receptor plays a role in the cardioprotective mechanism of chronic hypoxia. In the present study, we found that exercise training of rats during adaptation to hypoxia does not amplify the infarct size-limiting effect. Ischemia-resistant phenotype is maintained in the combined hypoxia-exercise setting despite exercise-induced attenuation of TNF-α-dependent protective signaling.


2008 ◽  
Vol 294 (6) ◽  
pp. H2473-H2479 ◽  
Author(s):  
Seiji Matsuhisa ◽  
Hajime Otani ◽  
Toru Okazaki ◽  
Koji Yamashita ◽  
Yuzo Akita ◽  
...  

Oxidative stress is involved in the tolerance to ischemia-reperfusion (I/R) injury. Because angiotensin II type 1 receptor blockers (ARBs) inhibit oxidative stress, there is concern that ARBs abolish the tolerance to I/R injury. Dahl salt-sensitive (DS) hypertensive and salt-resistant (DR) normotensive rats received an antioxidant, 2-mercaptopropionylglycine (MPG), or an ARB, losartan, for 7 days. Losartan and MPG significantly inhibited oxidative stress as determined by tissue malondialdehyde + 4-hydroxynoneal and increased expression of inducible nitric oxide synthase (iNOS) in the DS rat heart. However, losartan but not MPG activated endothelial nitric oxide synthase (eNOS) as assessed by phosphorylation of eNOS on Ser1177. Infarct size after 30-min left coronary artery occlusion followed by 2-h reperfusion was comparable between DS and DR rat hearts. Although MPG and losartan had no effect on infarct size in the DR rat heart, MPG but not losartan significantly increased infarct size in the DS rat heart. A selective iNOS inhibitor, 1400W, increased infarct size in the DS rat heart, but it had no effect on infarct size in the losartan-treated DS rat heart. However, a nonselective NOS inhibitor, Nω-nitro-l-arginine methyl ester, increased infarct size in the losartan-treated DS rat heart. These results suggest that losartan preserves the tolerance to I/R injury by activating eNOS despite elimination of redox-sensitive upregulation of iNOS and iNOS-dependent cardioprotection in the DS rat heart.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1667
Author(s):  
Yan-Cheng Shen ◽  
Yan-Jhih Shen ◽  
Wen-Sen Lee ◽  
Michael Yu-Chih Chen ◽  
Wei-Chia Tu ◽  
...  

To identify the core structure of 2-aminoethoxydiphenyl borate (2-APB) responsible for the anti-oxidative and protective effect on the ischemia/reperfusion (I/R)-induced heart injury, various 2-APB analogues were analyzed, and several antioxidant assays were performed. Cell viability was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Myocardial infarct size was quantified using triphenyl tetrazolium chloride (TTC) staining. The levels of tumor necrosis factor-alpha (TNF-α) and cleaved-caspase-3 protein were evaluated as an indicator for the anti-inflammatory and anti-apoptotic effect, respectively. Our data show that 2-APB, diphenylborinic anhydride (DPBA) and 3-(diphenylphosphino)-1-propylamine (DP3A) all exerted the anti-oxidative activity, but only 2-APB and DPBA can scavenge H2O2. 2-APB and DPBA can potently inhibit hydrogen peroxide (H2O2)- and hypoxanthine/xanthine oxidase (HX/XOD)-induced increases in intracellular H2O2 and H9c2 cell death. 2-APB and DPBA were able to decrease the I/R-induced adult rat cardiomyocytes death, myocardial infarct size, and the levels of malondialdehyde (MDA) and creatine kinase-MB (CK-MB). Our results suggest that the two benzene rings with a boron atom comprise the core structure of 2-APB responsible for the anti-oxidative effect mediated through the reaction with H2O2 and generation of phenolic compounds, which in turn reduced the I/R-induced oxidative stress and injury in the rat heart.


2001 ◽  
Vol 281 (4) ◽  
pp. H1630-H1636 ◽  
Author(s):  
Daniel Schulman ◽  
David S. Latchman ◽  
Derek M. Yellon

Ischemic preconditioning (IP) reduces infarct size in young animals; however, its impact on aging is underinvestigated. The effect of variations in IP stimuli was studied in young, middle-aged, and aged rat hearts. Isolated hearts underwent 35 min of regional ischemia and 120 min of reperfusion. Hearts with IP were subjected to either one ischemia-reperfusion cycle (5 min of ischemia and 5 min of reperfusion per cycle) or three successive cycles before 35 min of regional ischemia. Additional studies investigated the effects of pharmacological preconditioning in aged hearts using the adenosine A1 receptor agonist 2-chloro- N 6-cyclopentyladenosine, the protein kinase C analog 1,2-dioctanoyl- sn-glycerol, and the mitochondrial ATP-sensitive potassium (KATP)-channel opener diazoxide. Infarct sizes indicated that the aged rat heart could not be preconditioned via ischemic or pharmacological means. The middle-aged rat heart had a blunted IP response compared with the young adult (only an increased IP stimulus caused a significant reduction in infarct size). These results suggest that there are defects within the IP signaling cascade of the aged heart. Clinical relevance is important if we are to use any IP-like mimetics to the benefit of an aging population.


2006 ◽  
Vol 25 (2) ◽  
pp. 314-324 ◽  
Author(s):  
Eliana Lucchinetti ◽  
Jianhua Feng ◽  
Rafaela da Silva ◽  
Genrich V. Tolstonog ◽  
Marcus C. Schaub ◽  
...  

Microarray analyses indicate that ischemic and pharmacological preconditioning suppress overexpression of the non-long terminal repeat retrotransposon long interspersed nuclear element 1 (LINE-1, L1) after ischemia-reperfusion in the rat heart. We tested whether L1 overexpression is mechanistically involved in postischemic myocardial damage. Isolated, perfused rat hearts were treated with antisense or scrambled oligonucleotides (ODNs) against L1 for 60 min and exposed to 40 min of ischemia followed by 60 min of reperfusion. Functional recovery and infarct size were measured. Effective nuclear uptake was determined by FITC-labeled ODNs, and downregulation of L1 transcription was confirmed by RT-PCR. Immunoblot analysis was used to assess changes in expression levels of the L1-encoded proteins ORF1p and ORF2p. Immunohistochemistry was performed to localize ORF1/2 proteins in cardiac tissue. Effects of ODNs on prosurvival protein kinase B (Akt/PKB) expression and activity were also determined. Antisense ODNs against L1 prevented L1 burst after ischemia-reperfusion. Inhibition of L1 increased Akt/PKBβ expression, enhanced phosphorylation of PKB at serine 473, and markedly improved postischemic functional recovery and decreased infarct size. Antisense ODN-mediated protection was abolished by LY-294002, confirming the involvement of the Akt/PKB survival pathway. ORF1p and ORF2p were found to be expressed in rat heart. ORF1p showed a predominantly nuclear localization in cardiomyocytes, whereas ORF2p was exclusively present in endothelial cells. ORF1p levels increased in response to ischemia, which was reversed by antisense ODN treatment. No significant changes in ORF2p were noted. Our results demonstrate that L1 suppression favorably affects postischemic outcome in the heart. Modifying transcriptional activity of L1 may represent a novel anti-ischemic therapeutic strategy.


2003 ◽  
Vol 228 (5) ◽  
pp. 546-549 ◽  
Author(s):  
Emanuela Masini ◽  
A. Vannacci ◽  
C. Marzocca ◽  
S. Pierpaoli ◽  
L. Giannini ◽  
...  

Carbon monoxide (CO) is a signaling gas produced intracellularly by heme oxygenase (HO) enzymes using heme as a substrate. During heme breakdown, HO-1 and HO-2 release CO, biliverdin, and Fe2+. In this study, we investigated the effects of manipulation of the HO-1 system in an in vivo model of focal ischemia–reperfusion (FIR) in the rat heart. Male Wistar albino rats, under general anesthesia and artificial ventilation, underwent thoracotomy, the pericardium was opened, and a silk suture was placed around the left descending coronary artery; ischemia was induced by tightening the suture and was monitored for 30 min. Subsequently, the ligature was released to allow reperfusion lasting for 60 min. The first group of rats was sham operated and injected intraperitoneally (ip) with saline. The second group underwent FIR. The third group was treated ip 18 hr before FIR with hemin (4 mg/kg). The fourth group was pretreated ip 24 hr before FIR and 6 hr before hemin with zinc protoporphyrin IX (ZnPP-IX, 50 μg/kg). Specimens of the left ventricle were taken for determination of HO expression and activity, infarct size, malonyldialdehyde (MDA) production, and tissue calcium content. FIR led to a significant increase in the generation of MDA and notably raised tissue calcium levels. Induction of HO-1 by hemin significantly decreased infarct size, incidence of reperfusion arrhythmias, MDA generation, and calcium overload induced by FIR. These effects were prevented by the HO-1 inhibitor ZnPP-IX. The present experiments show that the concerted actions of CO, iron, and biliverdin/bilirubin modulate the FIR-induced myocardial injury.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Toru Okazaki ◽  
Hajime Otani ◽  
Koji Yamashita ◽  
Hiromi Jo ◽  
Kei Yoshioka ◽  
...  

Although expression of inducible nitric oxide synthase (iNOS) and oxidative stress are increased in diabetic (DM) hearts, the role of iNOS uncoupling in ischemia/reperfusion (IR) injury remains unknown. Because iNOS-derived NO is known to play a crucial role in cardioprotection against IR injury in non-DM hearts, we hypothesized that iNOS uncoupling may compromise tolerance to IR injury in the DM heart by decreasing the bioavailability of NO. The expression and activity of iNOS but not n/eNOS were increased in the streptozotocin-induced DM rat heart. Under Langendorff perfusion, superoxide generation as evaluated by dihydroethidium accumulation in the nucleus was significantly increased in cardiomyocytes of the DM heart, but it was inhibited by treatment with the NOS co-factor tetrahydrobiopterin (BH4; 10 μM) or an iNOS selective inhibitor 1400W (10 μM). BH4 increased NOx, a marker of NO bioavailability, and cGMP in the DM heart. The increase in cGMP by BH4 was abrogated by co-treatment with 1400W or a NO-sensitive guanylyl cyclase inhibitor ODQ (10 μM). BH4 significantly decreased nitrotyrosin formation but increased protein S -nitrosylation in the DM heart. The increase in protein S -nitrosylation by BH4 was abolished by co-treatment with a thiol reducing agent dithiothreitol (DTT; 5 mM). The isolated rat heart was subjected to 30 min global ischemia followed by 120 min reperfusion. Post-ischemic recovery of left ventricular (LV) function and infarct size was comparable between the non-DM and the DM hearts. Pre-ischemic treatment with BH4 significantly improved post-ischemic LV function and reduced infarct size only in the DM heart. Co-treatment with BH4 and 1400W, ODQ, or DTT had no significant effect on post-ischemic LV function and infarct size in the non-DM heart. However, co-treatment with BH4 and 1400W or DTT but not ODQ abolished BH4-induced improvement of post-ischemic LV function and reduction of infarct size in the DM heart. These results suggest that inhibition of iNOS uncoupling by BH4 confers cardioprotection against IR injury in the streptozotocin-induced DM rat heart by increasing the bioavailability of NO and this cardioprotective effect is mediated by protein S -nitrosylation but not cGMP.


2010 ◽  
Vol 299 (2) ◽  
pp. H470-H481 ◽  
Author(s):  
Giuseppe Alloatti ◽  
Elisa Arnoletti ◽  
Eleonora Bassino ◽  
Claudia Penna ◽  
Maria Giulia Perrelli ◽  
...  

Obestatin, a newly discovered peptide encoded by the ghrelin gene, induces the expression of genes regulating pancreatic β-cell differentiation, insulin biosynthesis, and glucose metabolism. It also activates antiapoptotic signaling pathways such as phosphoinositide 3-kinase (PI3K) and ERK1/2 in pancreatic β-cells and human islets. Since these kinases have been shown to protect against myocardial injury, we sought to investigate whether obestatin would exert cardioprotective effects. Both isolated perfused rat heart and cultured cardiomyocyte models of ischemia-reperfusion (I/R) were used to measure infarct size and cell apoptosis as end points of injury. The presence of specific obestatin receptors on cardiac cells as well as the signaling pathways underlying the obestatin effect were also studied. In the isolated heart, the addition of rat obestatin-(1–23) before ischemia reduced infarct size and contractile dysfunction in a concentration-dependent manner, whereas obestatin-(23–1), a synthetic analog with an inverse aminoacid sequence, was ineffective. The cardioprotective effect of obestatin-(1–23) was observed at concentrations of 10–50 nmol/l and was abolished by inhibiting PI3K or PKC by the addition of wortmannin (100 nmol/l) or chelerythrine, (5 μmol/l), respectively. In rat H9c2 cardiac cells or isolated ventricular myocytes subjected to I/R, 50 nmol/l obestatin-(1–23) reduced cardiomyocyte apoptosis and reduced caspase-3 activation; the antiapoptotic effect was blocked by the inhibition of PKC, PI3K, or ERK1/2 pathways. In keeping with these functional findings, radioreceptor binding results revealed the presence of specific high-affinity obestatin-binding sites, mainly localized on membranes of the ventricular myocardium and cardiomyocytes. Our data suggest that, by acting on specific receptors, obestatin-(1–23) activates PI3K, PKC-ε, PKC-δ, and ERK1/2 signaling and protects cardiac cells against myocardial injury and apoptosis induced by I/R.


2011 ◽  
Vol 301 (4) ◽  
pp. H1229-H1235 ◽  
Author(s):  
Varnavas C. Varnavas ◽  
Konstantinos Kontaras ◽  
Chryssoula Glava ◽  
Christos D. Maniotis ◽  
Michael Koutouzis ◽  
...  

Chronic skeletal muscle ischemia confers cytoprotection to the ventricular myocardium during infarction, but the underlying mechanisms remain unclear. Although neovascularization in the left ventricular myocardium has been proposed as a possible mechanism, the functional capacity of such vessels has not been studied. We examined the effects of chronic limb ischemia on infarct size, coronary blood flow, and left ventricular function after ischemia-reperfusion. Hindlimb ischemia was induced in 65 Wistar rats by excision of the left femoral artery, whereas 65 rats were sham operated. After 4 wk, myocardial infarction was generated by permanent coronary artery ligation. Infarct size was measured 24 h postligation. Left ventricular function was evaluated in isolated hearts after ischemia-reperfusion, 4 wk after limb ischemia. Neovascularization was assessed by immunohistochemistry, and coronary flow was measured under maximum vasodilatation at different perfusion pressures before and after coronary ligation. Infarct size was smaller after limb ischemia compared with controls (24.4 ± 8.1% vs. 46.2 ± 9.5% of the ventricle and 47.6 ± 8.7% vs. 80.1 ± 9.3% of the ischemic area, respectively). Indexes of left ventricular function at the end of reperfusion (divided by baseline values) were improved after limb ischemia (developed pressure: 0.68 ± 0.06 vs. 0.59 ± 0.05, P = 0.008; maximum +dP/d t: 0.70 ± 0.08 vs. 0.59 ± 0.04, P = 0.004; and maximum −dP/d t: 0.86 ± 0.14 vs. 0.72 ± 0.10, P = 0.041). Coronary vessel density was markedly higher ( P = 0.00021) in limb ischemic rats. In contrast to controls ( F = 5.65, P = 0.00182), where coronary flow decreased, it remained unchanged ( F = 1.36, P = 0.28) after ligation in limb ischemic rats. In conclusion, chronic hindlimb ischemia decreases infarct size and attenuates left ventricular dysfunction by increasing coronary collateral vessel density and blood flow.


Sign in / Sign up

Export Citation Format

Share Document