On the Challenges of Anesthesia and Surgery during Interplanetary Spaceflight

2021 ◽  
Author(s):  
Matthieu Komorowski ◽  
Séamus Thierry ◽  
Clément Stark ◽  
Mark Sykes ◽  
Jochen Hinkelbein

This focused review summarizes the medical, logistical and environmental challenges that would be associated with dealing with a traumatic surgical case during an interplanetary space mission in the near future.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kazuo Shiokawa ◽  
Katya Georgieva

AbstractThe Sun is a variable active-dynamo star, emitting radiation in all wavelengths and solar-wind plasma to the interplanetary space. The Earth is immersed in this radiation and solar wind, showing various responses in geospace and atmosphere. This Sun–Earth connection variates in time scales from milli-seconds to millennia and beyond. The solar activity, which has a ~11-year periodicity, is gradually declining in recent three solar cycles, suggesting a possibility of a grand minimum in near future. VarSITI—variability of the Sun and its terrestrial impact—was the 5-year program of the scientific committee on solar-terrestrial physics (SCOSTEP) in 2014–2018, focusing on this variability of the Sun and its consequences on the Earth. This paper reviews some background of SCOSTEP and its past programs, achievements of the 5-year VarSITI program, and remaining outstanding questions after VarSITI.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Manuela Temmer

AbstractThe Sun, as an active star, is the driver of energetic phenomena that structure interplanetary space and affect planetary atmospheres. The effects of Space Weather on Earth and the solar system is of increasing importance as human spaceflight is preparing for lunar and Mars missions. This review is focusing on the solar perspective of the Space Weather relevant phenomena, coronal mass ejections (CMEs), flares, solar energetic particles (SEPs), and solar wind stream interaction regions (SIR). With the advent of the STEREO mission (launched in 2006), literally, new perspectives were provided that enabled for the first time to study coronal structures and the evolution of activity phenomena in three dimensions. New imaging capabilities, covering the entire Sun-Earth distance range, allowed to seamlessly connect CMEs and their interplanetary counterparts measured in-situ (so called ICMEs). This vastly increased our knowledge and understanding of the dynamics of interplanetary space due to solar activity and fostered the development of Space Weather forecasting models. Moreover, we are facing challenging times gathering new data from two extraordinary missions, NASA’s Parker Solar Probe (launched in 2018) and ESA’s Solar Orbiter (launched in 2020), that will in the near future provide more detailed insight into the solar wind evolution and image CMEs from view points never approached before. The current review builds upon the Living Reviews article by Schwenn from 2006, updating on the Space Weather relevant CME-flare-SEP phenomena from the solar perspective, as observed from multiple viewpoints and their concomitant solar surface signatures.


2020 ◽  
Vol 492 (3) ◽  
pp. 4437-4455 ◽  
Author(s):  
O C Winter ◽  
G Valvano ◽  
T S Moura ◽  
G Borderes-Motta ◽  
A Amarante ◽  
...  

ABSTRACT The (153591) 2001 SN263 asteroid system, a target of the first Brazilian interplanetary space mission, is one of the known three triple systems within the population of near-Earth asteroids. One of the mission objectives is to collect data about the formation of this system. The analysis of these data will help in the investigation of the physical and dynamical structures of the components (Alpha, Beta, and Gamma) of this system, in order to find vestiges related to its origin. In this work, we assume the irregular shape of the 2001 SN263 system components as uniform-density polyhedra and computationally investigate the gravitational field generated by these bodies. The goal is to explore the dynamical characteristics of the surface and environment around each component. Then, taking into account the rotational speed, we analyse their topographic features through the quantities geometric altitude, tilt, geopotential, slope, and surface accelerations among others. Additionally, the investigation of the environment around the bodies made it possible to construct zero-velocity curves, which delimit the location of equilibrium points. The Alpha component has a peculiar number of 12 equilibrium points, all of them located very close to its surface. In the cases of Beta and Gamma, we found four equilibrium points not so close to their surfaces. Then, performing numerical experiments around their equilibrium points, we identified the location and size of just one stable region, which is associated with an equilibrium point around Beta. Finally, we integrated a spherical cloud of particles around Alpha and identified the location on the surface of Alpha where the particles have fallen.


Author(s):  
A Weber ◽  
S Fasoulas ◽  
K Wolf

Conceptual design optimization (CDO) is a technique proposed for the structured evaluation of different design concepts. Design grammars provide a flexible modular modelling architecture. The model is generated by a compiler based on predefined components and rules. The rules describe the composition of the model; thus, different models can be optimized by the CDO in one run. This allows considering a mission design including the mission analysis and the system design. The combination of a CDO approach with a model based on design grammars is shown for the concept study of a near-Earth asteroid mission. The mission objective is to investigate two asteroids of different kinds. The CDO reveals that a mission concept using two identical spacecrafts flying to one target each is better than a mission concept with one spacecraft flying to two asteroids consecutively.


2005 ◽  
Vol 23 (9) ◽  
pp. 3003-3007 ◽  
Author(s):  
L. I. Dorman

Abstract. We determine the dimension of the Heliosphere (modulation region), radial diffusion coefficient and other parameters of convection-diffusion and drift mechanisms of cosmic ray (CR) long-term variation, depending on particle energy, the level of solar activity (SA) and general solar magnetic field. This important information we obtain on the basis of CR and SA data in the past, taking into account the theory of convection-diffusion and drift global modulation of galactic CR in the Heliosphere. By using these results and the predictions which are regularly published elsewhere of expected SA variation in the near future and prediction of next future SA cycle, we may make a prediction of the expected in the near future long-term cosmic ray intensity variation. We show that by this method we may make a prediction of the expected in the near future (up to 10-12 years, and may be more, in dependence for what period can be made definite prediction of SA) galactic cosmic ray intensity variation in the interplanetary space on different distances from the Sun, in the Earth's magnetosphere, and in the atmosphere at different altitudes and latitudes.


Author(s):  
Thangavel Sanjeeviraja ◽  
R. Santhanakrishnan ◽  
S. Lakshmi ◽  
R. Asokan

The purpose of designing a spacecraft Altitude and dynamic control models play an important role in an interplanetary space mission. Particular emphasis is controlling spacecraft Altitude by sail tilting and shifting. In addition, investigate an uncertain balance amongst the centre of pressure and centre of mass on a single axis gimbaled control. Implies a method of Monte Carlo is with standing a significant of solar pressure disturbance torque in deep space mission. A flight test experiment drives in a Low Earth Orbit (LEO), hence, authenticate the source of solar sailing is also suggested. Parameters are incorporating to study and demonstrate the various principals and methods involved in altitude control design and dynamic modeling at LEO. Mitigation of disturbance torques was also examined.


1980 ◽  
Vol 91 ◽  
pp. 523-539
Author(s):  
J. David Bohlin ◽  
Eric G. Chipman

Recent, fundamental discoveries of the phenomena of the Sun and of interplanetary space have led to a far broader definition of the term “solar physics” than was generally perceived a decade ago. The implications of this broadened definition of solar and heliospheric physics will be studied by essentially every solar space mission either now approved, or in the planning stage, for the period of 1980 to 1995. These missions include traditional Earth-orbiting satellites; Shuttle/Spacelab sortie missions, free flyers that transit the solar polar caps and probe the innermost corona (both frontier regions of the heliosphere), and finally possible semi-permanent orbiting platforms for advanced solar/heliosphere observations.


1966 ◽  
Vol 24 ◽  
pp. 116-117
Author(s):  
P.-I. Eriksson

Nowadays more and more of the reductions of astronomical data are made with electronic computers. As we in Uppsala have an IBM 1620 at the University, we have taken it to our help with reductions of spectrophotometric data. Here I will briefly explain how we use it now and how we want to use it in the near future.


1974 ◽  
Vol 22 ◽  
pp. 307 ◽  
Author(s):  
Zdenek Sekanina

AbstractIt is suggested that the outbursts of Periodic Comet Schwassmann-Wachmann 1 are triggered by impacts of interplanetary boulders on the surface of the comet’s nucleus. The existence of a cloud of such boulders in interplanetary space was predicted by Harwit (1967). We have used the hypothesis to calculate the characteristics of the outbursts – such as their mean rate, optically important dimensions of ejected debris, expansion velocity of the ejecta, maximum diameter of the expanding cloud before it fades out, and the magnitude of the accompanying orbital impulse – and found them reasonably consistent with observations, if the solid constituent of the comet is assumed in the form of a porous matrix of lowstrength meteoric material. A Monte Carlo method was applied to simulate the distributions of impacts, their directions and impact velocities.


Sign in / Sign up

Export Citation Format

Share Document