scholarly journals A Comprehensive Review of Low-Speed Rear Impact Volunteer Studies and a Comparison to Real-World Outcomes

Spine ◽  
2018 ◽  
pp. 1 ◽  
Author(s):  
Joseph Cormier ◽  
Lisa Gwin ◽  
Lars Reinhart ◽  
Rawson Wood ◽  
Charles Bain
Author(s):  
Paul S. Nolet ◽  
Larry Nordhoff ◽  
Vicki L. Kristman ◽  
Arthur C. Croft ◽  
Maurice P. Zeegers ◽  
...  

Injury claims associated with minimal damage rear impact traffic crashes are often defended using a “biomechanical approach,” in which the occupant forces of the crash are compared to the forces of activities of daily living (ADLs), resulting in the conclusion that the risk of injury from the crash is the same as for ADLs. The purpose of the present investigation is to evaluate the scientific validity of the central operating premise of the biomechanical approach to injury causation; that occupant acceleration is a scientifically valid proxy for injury risk. Data were abstracted, pooled, and compared from three categories of published literature: (1) volunteer rear impact crash testing studies, (2) ADL studies, and (3) observational studies of real-world rear impacts. We compared the occupant accelerations of minimal or no damage (i.e., 3 to 11 kph speed change or “delta V”) rear impact crash tests to the accelerations described in 6 of the most commonly reported ADLs in the reviewed studies. As a final step, the injury risk observed in real world crashes was compared to the results of the pooled crash test and ADL analyses, controlling for delta V. The results of the analyses indicated that average peak linear and angular acceleration forces observed at the head during rear impact crash tests were typically at least several times greater than average forces observed during ADLs. In contrast, the injury risk of real-world minimal damage rear impact crashes was estimated to be at least 2000 times greater than for any ADL. The results of our analysis indicate that the principle underlying the biomechanical injury causation approach, that occupant acceleration is a proxy for injury risk, is scientifically invalid. The biomechanical approach to injury causation in minimal damage crashes invariably results in the vast underestimation of the actual risk of such crashes, and should be discontinued as it is a scientifically invalid practice.


2021 ◽  
Vol 15 (3) ◽  
pp. 1-33
Author(s):  
Wenjun Jiang ◽  
Jing Chen ◽  
Xiaofei Ding ◽  
Jie Wu ◽  
Jiawei He ◽  
...  

In online systems, including e-commerce platforms, many users resort to the reviews or comments generated by previous consumers for decision making, while their time is limited to deal with many reviews. Therefore, a review summary, which contains all important features in user-generated reviews, is expected. In this article, we study “how to generate a comprehensive review summary from a large number of user-generated reviews.” This can be implemented by text summarization, which mainly has two types of extractive and abstractive approaches. Both of these approaches can deal with both supervised and unsupervised scenarios, but the former may generate redundant and incoherent summaries, while the latter can avoid redundancy but usually can only deal with short sequences. Moreover, both approaches may neglect the sentiment information. To address the above issues, we propose comprehensive Review Summary Generation frameworks to deal with the supervised and unsupervised scenarios. We design two different preprocess models of re-ranking and selecting to identify the important sentences while keeping users’ sentiment in the original reviews. These sentences can be further used to generate review summaries with text summarization methods. Experimental results in seven real-world datasets (Idebate, Rotten Tomatoes Amazon, Yelp, and three unlabelled product review datasets in Amazon) demonstrate that our work performs well in review summary generation. Moreover, the re-ranking and selecting models show different characteristics.


2019 ◽  
Vol 120 (1) ◽  
pp. 164-195 ◽  
Author(s):  
Waqar Ahmed Khan ◽  
S.H. Chung ◽  
Muhammad Usman Awan ◽  
Xin Wen

Purpose The purpose of this paper is to conduct a comprehensive review of the noteworthy contributions made in the area of the Feedforward neural network (FNN) to improve its generalization performance and convergence rate (learning speed); to identify new research directions that will help researchers to design new, simple and efficient algorithms and users to implement optimal designed FNNs for solving complex problems; and to explore the wide applications of the reviewed FNN algorithms in solving real-world management, engineering and health sciences problems and demonstrate the advantages of these algorithms in enhancing decision making for practical operations. Design/methodology/approach The FNN has gained much popularity during the last three decades. Therefore, the authors have focused on algorithms proposed during the last three decades. The selected databases were searched with popular keywords: “generalization performance,” “learning rate,” “overfitting” and “fixed and cascade architecture.” Combinations of the keywords were also used to get more relevant results. Duplicated articles in the databases, non-English language, and matched keywords but out of scope, were discarded. Findings The authors studied a total of 80 articles and classified them into six categories according to the nature of the algorithms proposed in these articles which aimed at improving the generalization performance and convergence rate of FNNs. To review and discuss all the six categories would result in the paper being too long. Therefore, the authors further divided the six categories into two parts (i.e. Part I and Part II). The current paper, Part I, investigates two categories that focus on learning algorithms (i.e. gradient learning algorithms for network training and gradient-free learning algorithms). Furthermore, the remaining four categories which mainly explore optimization techniques are reviewed in Part II (i.e. optimization algorithms for learning rate, bias and variance (underfitting and overfitting) minimization algorithms, constructive topology neural networks and metaheuristic search algorithms). For the sake of simplicity, the paper entitled “Machine learning facilitated business intelligence (Part II): Neural networks optimization techniques and applications” is referred to as Part II. This results in a division of 80 articles into 38 and 42 for Part I and Part II, respectively. After discussing the FNN algorithms with their technical merits and limitations, along with real-world management, engineering and health sciences applications for each individual category, the authors suggest seven (three in Part I and other four in Part II) new future directions which can contribute to strengthening the literature. Research limitations/implications The FNN contributions are numerous and cannot be covered in a single study. The authors remain focused on learning algorithms and optimization techniques, along with their application to real-world problems, proposing to improve the generalization performance and convergence rate of FNNs with the characteristics of computing optimal hyperparameters, connection weights, hidden units, selecting an appropriate network architecture rather than trial and error approaches and avoiding overfitting. Practical implications This study will help researchers and practitioners to deeply understand the existing algorithms merits of FNNs with limitations, research gaps, application areas and changes in research studies in the last three decades. Moreover, the user, after having in-depth knowledge by understanding the applications of algorithms in the real world, may apply appropriate FNN algorithms to get optimal results in the shortest possible time, with less effort, for their specific application area problems. Originality/value The existing literature surveys are limited in scope due to comparative study of the algorithms, studying algorithms application areas and focusing on specific techniques. This implies that the existing surveys are focused on studying some specific algorithms or their applications (e.g. pruning algorithms, constructive algorithms, etc.). In this work, the authors propose a comprehensive review of different categories, along with their real-world applications, that may affect FNN generalization performance and convergence rate. This makes the classification scheme novel and significant.


1996 ◽  
Vol 4 (4) ◽  
pp. 39-46 ◽  
Author(s):  
Arthur C. Croft
Keyword(s):  

1999 ◽  
Vol 8 (2) ◽  
pp. 118-125 ◽  
Author(s):  
M. L. Magnusson ◽  
M. H. Pope ◽  
L. Hasselquist ◽  
K. M. Bolte ◽  
M. Ross ◽  
...  

2022 ◽  
Vol 13 (1) ◽  
pp. 1-54
Author(s):  
Yu Zhou ◽  
Haixia Zheng ◽  
Xin Huang ◽  
Shufeng Hao ◽  
Dengao Li ◽  
...  

Graph neural networks provide a powerful toolkit for embedding real-world graphs into low-dimensional spaces according to specific tasks. Up to now, there have been several surveys on this topic. However, they usually lay emphasis on different angles so that the readers cannot see a panorama of the graph neural networks. This survey aims to overcome this limitation and provide a systematic and comprehensive review on the graph neural networks. First of all, we provide a novel taxonomy for the graph neural networks, and then refer to up to 327 relevant literatures to show the panorama of the graph neural networks. All of them are classified into the corresponding categories. In order to drive the graph neural networks into a new stage, we summarize four future research directions so as to overcome the challenges faced. It is expected that more and more scholars can understand and exploit the graph neural networks and use them in their research community.


2021 ◽  
Vol 85 (1) ◽  
pp. 32
Author(s):  
Jackie D. Zehr ◽  
Kayla M. Fewster ◽  
David C. Kingston ◽  
Chad E. Gooyers ◽  
Robert J. Parkinson ◽  
...  
Keyword(s):  

2020 ◽  
Vol 19 (04) ◽  
pp. 1091-1122
Author(s):  
Mujahid Abdullahi ◽  
Tahir Ahmad ◽  
Vinod Ramachandran

Zadeh introduced the concept of Z-numbers in 2011 to deal with imprecise information. In this regard, many research works have been published in an attempt to introduce some basic theoretical concepts of Z-numbers to model real-world problems. To understand the current challenges when dealing with Z-numbers and the feasibility of using Z-number in solving real-world problems, a comprehensive review of the existing work on Z-number is paramount. This paper consists of an overview of existing literature on Z-number and identifies some of the key areas that are required for further improvement.


Author(s):  
Calin Constantinov ◽  
Mihai L. Mocanu

In their very beginnings, when social networks were solely used for leisure purposes, any action performed online had minimal effect on the real world lives of their members. This has very much changed in our modern world, where becoming an influencer on Instagram can substantially raise one's income, politics is done on Twitter, and an inappropriate video posted on YouTube can get one fired. Similarly, professional networks have changed the approach universities take to prepare their students, the mechanisms behind companies seeking expertise, and the way in which professionals land matching jobs. In the context of discussing the benefits and pitfalls of using such platforms, several points relating to data privacy are highlighted. Additionally, for a complete view of all analytics possibilities, a survey was conducted by looking over 24 research papers, summarising their findings, detailing the six generic research areas which were identified and speculating on what the future might hold.


Sign in / Sign up

Export Citation Format

Share Document