Cucurbitacin E inhibits esophageal carcinoma cell proliferation, migration, and invasion by suppressing Rac1 expression through PI3K/AKT/mTOR pathway

2020 ◽  
Vol 31 (8) ◽  
pp. 847-855 ◽  
Author(s):  
Luquan Zhang ◽  
Hao Liang ◽  
Yanzhong Xin
2019 ◽  
Author(s):  
jiang yongan ◽  
Liu Jia yu ◽  
Hong Wangwang ◽  
Fei Xiaowei ◽  
Liu ru'en

Abstract Arctigenin (ARG) is a natural lignan compound extracted from arctium lappa and has displayed anticancer functions and effective treatments in a variety of cancers.Studies had shown that Arctigenin(ARG) inhibits tumors through the AKT/MTOR pathway and mediates autophagy.However,the role in glioma cellshave not still fully understood.This study was designed to investigate whether Arctigenin(ARG) can mediateAKT/mTOR pathway in glioma to regulate autophagy,and affected glioma cells growth and survival.We found that the dose-dependent downregulation of Arctigenin(ARG),reducing cell proliferation,migration and invasion in two human glioblastoma cell lines (U87, T98G),These phenomena were reversed after the administration of the AKT agonist (SC79). Arctigenin(ARG) also affected other autophagy markers such as p62, LC3B.In addition, the apoptotic molecules cleaved-PARP,caspase-9, and cleaved-caspase3 were also dose-dependently altered.


2020 ◽  
Vol 19 ◽  
pp. 153303382095702
Author(s):  
Xue-zhen Song ◽  
Xiao-ning Ren ◽  
Xiao-jun Xu ◽  
Xiao-xuan Ruan ◽  
Yi-li Wang ◽  
...  

Hepatocellular carcinoma (HCC) is a severe disease with high mortality in the world. Emerging evidence has suggested that lncRNAs play an important role in cancer progression, including HCC. This study aimed to comprehensively investigate the effect of lncRNA RHPN1 antisense RNA 1 (RHPN1-AS1) on HCC and its underlying molecular mechanism. In this study, we evaluated the expressions of lncRNA RHPN1-AS1 and miR-7-5p by qRT-RCR in both HCC tissue and HCC cells. Our findings showed that lncRNA RHPN1-AS1 was upregulated in HCC tissue and HCC cells, while miR-7-5p was downregulated. LncRNA RHPN1-AS1 expression in HCC patients was closely related to vascular invasion, tumor-node-metastasis (TNM) stage and barcelona clinic liver cancer (BCLC) stage. Furthermore, we quantified cell clone-formation ability, proliferation, migration and invasion of HCCLM3 and MHCC97 H cells using several assays (colony formation assay, 5-Ethynyl-2′-deoxyuridine (EdU) assay and transwell assay, respectively). Functional experiments confirmed that silencing lncRNA RHPN1-AS1 inhibited cell proliferation, migration and invasion in HCCLM3 and MHCC97 H cells. After that, bioinformatics analysis, dual luciferase reporter gene assay, qRT-PCR and western blot were used to investigate the molecular mechanism of lncRNA RHPN1-AS1 on HCC. Mechanistically, the rescue experiments demonstrated that miR-7-5p inhibitor reversed the inhibition effect of silencing lncRNA RHPN1-AS1 on HCCLM3 cells proliferation, migration and invasion. Moreover, silencing lncRNA RHPN1-AS1 also inhibited the activation of PI3K/AKT/mTOR pathway. Taken together our findings demonstrated that lncRNA RHPN1-AS1 could facilitate cell proliferation, migration and invasion via targeting miR-7-5p and activating PI3K/AKT/mTOR pathway in HCC.


Author(s):  
Hao Shi ◽  
Shan Huang ◽  
Mingde Qin ◽  
Xiaofeng Xue ◽  
Xingpo Guo ◽  
...  

Cancer-associated fibroblast (CAF)-derived exosomes play a major role in gastric carcinoma (GC) tumorigenesis. However, the mechanism behind the activity of circular RNAs in CAF-derived exosomes in GC remains unclear. In the present study, we identified differentially expressed circ_0088300 in GC tissues and plasma exosomes. We found that CAFs delivered functional circ_0088300 to GC tumor cells via exosomes and promoted the proliferation, migration and invasion abilities of GC cells. Furthermore, we demonstrated that circ_0088300 packaging into exosomes was driven by KHDRBS3. In addition, we verified that circ_0088300 served as a sponge that directly targeted miR-1305 and promoted GC cell proliferation, migration and invasion. Finally, the JAK/STAT signaling pathway was found to be involved in the circ_0088300/miR-1305 axis, which accelerates GC tumorigenesis. In conclusion, our results indicated a previously unknown regulatory pathway in which exosomal circ_0088300 derived from CAFs acts as a sponge of miR-1305 and promotes GC cell proliferation, migration and invasion; these data identify a potential biomarker and novel therapeutic target for GC in the future.


Aging ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 6240-6259 ◽  
Author(s):  
Jing Gao ◽  
Rongmu Xia ◽  
Jianbo Chen ◽  
Jing Gao ◽  
Xianyang Luo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document