cancer associated fibroblast
Recently Published Documents


TOTAL DOCUMENTS

299
(FIVE YEARS 171)

H-INDEX

28
(FIVE YEARS 13)

2022 ◽  
Author(s):  
Leming Shi ◽  
Jun Shang ◽  
Yue Zhao ◽  
He Jiang ◽  
Jingcheng Yang ◽  
...  

Abstract Patients with adenocarcinomas in situ (AIS) and minimally invasive (MIA) lung adenocarcinoma (LUAD) are curable by surgery, whereas 20% stage I patients die within five years post-operative. We hypothesize that poor-prognosis stage I patients may exhibit key molecular characteristics deviating from AIS/MIA. Focal adhesion (FA) was identified as the only pathway significantly perturbed at both genomic and transcriptomic levels by comparing 98 AIS/MIA and 99 LUAD. Then, two FA genes (COL11A1 and THBS2) were found strongly upregulated from AIS/MIA to stage I while steadily expressed from normal to AIS/MIA. Furthermore, unsupervised clustering separated stage I patients into two molecularly and prognostically distinct subtypes (S1 and S2) based on COL11A1 and THBS2 expressions (FA2). Subtype S1 resembled AIS/MIA, whereas S2 exhibited more somatic alterations and activated cancer-associated fibroblast. The simple knowledge-driven model was validated with 12 external datasets, showing potential in identifying high-risk stage I patients for more intensive post-surgery treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xingxing Dong ◽  
Yalong Yang ◽  
Qianqian Yuan ◽  
Jinxuan Hou ◽  
Gaosong Wu

Cell migration-inducing hyaluronidase 1 (CEMIP), a Wnt-related protein and also known as KIAA1199, is implicated in the process of metastatic colonization in a variety of malignant tumors, including breast cancer (BC), which is one of the most frequently diagnosed tumors in women worldwide. In this study, multiple public databases, online analytical tools, and bioinformatics approaches were applied to explore the expression levels, regulatory mechanisms, and biological functions of CEMIP in BC. We illustrated that CEMIP was highly expressed in various kinds of carcinomas, including BC, especially advanced subtypes, and predicted less favorable prognosis (negatively associated with overall survival) in BC patients, which might be an independent prognostic factor. Then, we revealed that the mutation and high expression of CEMIP might lead to it as an oncogene. We also demonstrated that TP53 mutation, DNA hypo-methylation, and the expression changes of three potential upstream transcription factors (EZH2, EGR1, and JUN) of CEMIP were likely to cause the hyperexpression of CEMIP in BC. Moreover, our findings suggested that CEMIP might exert its carcinogenic roles in the tumor microenvironment via participation in the extracellular matrix formation, increasing cancer-associated fibroblast (CAF), M2 macrophage, and neutrophil infiltration and decreasing CD8+ T cell infiltration. In summary, our study provided more solid evidence for CEMIP as a prognostic and metastatic biomarker and a potential therapeutic target in BC. Of course, these findings also need more confirmations of basic experiments and further clinical trials in the future.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260800
Author(s):  
Jillian L. Astarita ◽  
Shilpa Keerthivasan ◽  
Bushra Husain ◽  
Yasin Şenbabaoğlu ◽  
Erik Verschueren ◽  
...  

The cancer-associated fibroblast (CAF) marker podoplanin (PDPN) is generally correlated with poor clinical outcomes in cancer patients and thus represents a promising therapeutic target. Despite its biomedical relevance, basic aspects of PDPN biology such as its cellular functions and cell surface ligands remain poorly uncharacterized, thus challenging drug development. Here, we utilize a high throughput platform to elucidate the PDPN cell surface interactome, and uncover the neutrophil protein CD177 as a new binding partner. Quantitative proteomics analysis of the CAF phosphoproteome reveals a role for PDPN in cell signaling, growth and actomyosin contractility, among other processes. Moreover, cellular assays demonstrate that CD177 is a functional antagonist, recapitulating the phenotype observed in PDPN-deficient CAFs. In sum, starting from the unbiased elucidation of the PDPN co-receptome, our work provides insights into PDPN functions and reveals the PDPN/CD177 axis as a possible modulator of fibroblast physiology in the tumor microenvironment.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Chao Li ◽  
Adilson Fonseca Teixeira ◽  
Hong-Jian Zhu ◽  
Peter ten Dijke

AbstractTo identify novel cancer therapies, the tumor microenvironment (TME) has received a lot of attention in recent years in particular with the advent of clinical successes achieved by targeting immune checkpoint inhibitors (ICIs). The TME consists of multiple cell types that are embedded in the extracellular matrix (ECM), including immune cells, endothelial cells and cancer associated fibroblasts (CAFs), which communicate with cancer cells and each other during tumor progression. CAFs are a dominant and heterogeneous cell type within the TME with a pivotal role in controlling cancer cell invasion and metastasis, immune evasion, angiogenesis and chemotherapy resistance. CAFs mediate their effects in part by remodeling the ECM and by secreting soluble factors and extracellular vesicles. Exosomes are a subtype of extracellular vesicles (EVs), which contain various biomolecules such as nucleic acids, lipids, and proteins. The biomolecules in exosomes can be transmitted from one to another cell, and thereby affect the behavior of the receiving cell. As exosomes are also present in circulation, their contents can also be explored as biomarkers for the diagnosis and prognosis of cancer patients. In this review, we concentrate on the role of CAFs-derived exosomes in the communication between CAFs and cancer cells and other cells of the TME. First, we introduce the multiple roles of CAFs in tumorigenesis. Thereafter, we discuss the ways CAFs communicate with cancer cells and interplay with other cells of the TME, and focus in particular on the role of exosomes. Then, we elaborate on the mechanisms by which CAFs-derived exosomes contribute to cancer progression, as well as and the clinical impact of exosomes. We conclude by discussing aspects of exosomes that deserve further investigation, including emerging insights into making treatment with immune checkpoint inhibitor blockade more efficient.


2021 ◽  
Author(s):  
Sandipan Dasgupta ◽  
Daniella Y. Dyagi ◽  
Gal Haimovich ◽  
Emanuel Wyler ◽  
Tsviya Olender ◽  
...  

Full-length mRNAs can transfer between adjacent mammalian cells via direct cell-to-cell connections called tunneling nanotubes (TNTs). However, the extent of mRNA transfer at the transcriptome-wide level (the transferome) is unknown. Here, we analyzed whole transcriptome mRNA transfer between heterogeneous human-mouse cell populations in in vitro co-culture using RNA-sequencing. Our data indicate that mRNA transfer is non-selective, prevalent across the human transcriptome, and that the amount of transfer to mouse embryonic fibroblasts (MEFs) strongly correlates with the endogenous level of gene expression in donor human breast cancer cells (MCF7). These results were validated by both quantitative RT-PCR and in situ hybridization, and analysis shows that typically <1% of endogenous mRNAs and lncRNAs undergo transfer. Non-selective expression-dependent RNA transfer was further validated using synthetic RNA reporters. Notably, significant differential changes in the native MEF transcriptome were observed in response to co-culture, including the upregulation of multiple cancer- and cancer-associated fibroblast-related genes and pathways. Together, these results lead us to suggest that TNT-mediated RNA transfer could be a phenomenon of physiological importance under both normal and pathogenic conditions.


Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5246
Author(s):  
Pradip De ◽  
Jennifer Aske ◽  
Nandini Dey

The journey of a normal resident fibroblast belonging to the tumor microenvironment (TME) from being a tumor pacifier to a tumor patron is fascinating. We introduce cancer-associated fibroblast (CAF) as a crucial component of the TME. Activated-CAF partners with tumor cells and all components of TME in an established solid tumor. We briefly overview the origin, activation, markers, and overall functions of CAF with a particular reference to how different functions of CAF in an established tumor are functionally connected to the development of resistance to cancer therapy in solid tumors. We interrogate the role of CAF in mediating resistance to different modes of therapies. Functional diversity of CAF in orchestrating treatment resistance in solid tumors portrays CAF as a common orchestrator of treatment resistance; a roadblock in cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document