Focal Cortical Dysplasia Type II (Malformations of Cortical Development) Aberrantly Expresses Apoptotic Proteins

2008 ◽  
Vol 16 (5) ◽  
pp. 471-476 ◽  
Author(s):  
Wendy A. Chamberlain ◽  
Richard A. Prayson
2021 ◽  
Author(s):  
Horst Urbach ◽  
Elias Kellner ◽  
Nico Kremers ◽  
Ingmar Blümcke ◽  
Theo Demerath

AbstractFocal cortical dysplasia (FCD) are histopathologically categorized in ILAE type I to III. Mild malformations of cortical development (mMCD) including those with oligodendroglial hyperplasia (MOGHE) are to be integrated into this classification yet. Only FCD type II have distinctive MRI and molecular genetics alterations so far. Subtle FCD including FCD type II located in the depth of a sulcus are often overlooked requiring the use of dedicated sequences (MP2RAGE, FLAWS, EDGE) and/or voxel (VBM)- or surface-based (SBM) postprocessing. The added value of 7 Tesla MRI has to be proven yet.


2019 ◽  
pp. 1157-1169
Author(s):  
Serge Weis ◽  
Michael Sonnberger ◽  
Andreas Dunzinger ◽  
Eva Voglmayr ◽  
Martin Aichholzer ◽  
...  

Epilepsia ◽  
2009 ◽  
Vol 50 (12) ◽  
pp. 2593-2598 ◽  
Author(s):  
Wendy A. Chamberlain ◽  
Mark L. Cohen ◽  
Kymberly A. Gyure ◽  
Bette K. Kleinschmidt-DeMasters ◽  
Arie Perry ◽  
...  

2021 ◽  
Author(s):  
Dulcie Lai ◽  
Meethila Gade ◽  
Edward Yang ◽  
Hyun Yong Koh ◽  
Nicole M. Walley ◽  
...  

Post-zygotically acquired genetic variants, or somatic variants, that arise during cortical development have emerged as important causes of focal epilepsies, particularly those due to malformations of cortical development. Pathogenic somatic variants have been identified in many genes within the PI3K-AKT3-mTOR-signaling pathway in individuals with hemimegalencephaly and focal cortical dysplasia (type II), and more recently in SLC35A2 in individuals with focal cortical dysplasia (type I) or non-dysplastic epileptic cortex. Given the expanding role of somatic variants across different brain malformations, we sought to delineate the landscape of somatic variants in a large cohort of patients who underwent epilepsy surgery with hemimegalencephaly or focal cortical dysplasia. We evaluated samples from 123 children with hemimegalencephaly (n=16), focal cortical dysplasia type I and related phenotypes (n=48), focal cortical dysplasia type II (n=44), or focal cortical dysplasia type III (n=15) classified using imaging and pathological findings. We performed high-depth exome sequencing in brain tissue-derived DNA from each case and identified somatic single nucleotide, indel, and large copy number variants. In 75% of individuals with hemimegalencephaly and 29% with focal cortical dysplasia type II, we identified pathogenic variants in PI3K-AKT-mTOR pathway genes. Four of 48 cases with focal cortical dysplasia type I (8%) had a likely pathogenic variant in SLC35A2. While no other gene had multiple disease-causing somatic variants across the focal cortical dysplasia type I cohort, four individuals in this group had a single pathogenic or likely pathogenic somatic variant in CASK, KRAS, NF1, and NIPBL, genes associated with neurodevelopmental disorders. No rare pathogenic or likely pathogenic somatic variants in any neurological disease genes like those identified in the focal cortical dysplasia type I cohort were found in 63 neurologically normal controls (P = 0.017), suggesting a role for these novel variants. We also identified a somatic loss-of-function variant in the known epilepsy gene, PCDH19, present in a very small number of alleles in the dysplastic tissue from a female patient with focal cortical dysplasia IIIa with hippocampal sclerosis. In contrast to focal cortical dysplasia type II, neither focal cortical dysplasia type I nor III had somatic variants in genes that converge on a unifying biological pathway, suggesting greater genetic heterogeneity compared to type II. Importantly, we demonstrate that FCD types I, II, and III, are associated with somatic gene variants across a broad range of genes, many associated with epilepsy in clinical syndromes caused by germline variants, as well as including some not previously associated with radiographically evident cortical brain malformations.


2006 ◽  
Vol 130 (8) ◽  
pp. 1163-1168 ◽  
Author(s):  
E. Brannon Morris ◽  
Joseph E. Parisi ◽  
Jeffrey R. Buchhalter

Abstract Context.—Malformations of cortical development (MCDs) are an important cause of pharmacoresistent epilepsy and are frequently diagnosed in surgical pathology. The lack of uniform tissue processing and standard histopathologic nomenclature to describe MCDs has resulted in diagnostic ambiguity. Objective.—To describe the immunohistochemical findings of MCDs from a relatively large surgical epilepsy cohort and incorporate terminology that more adequately reflects the histopathologic findings into a contemporary classification of MCD. Design.—Utilizing the Mayo Clinic Rochester Surgical Pathology Database and patient records, 53 patients with previous intractable epilepsy and a known malformation of cortical development were identified. All of the cohort's paraffin embedded surgical specimens were resectioned and stained with hematoxylin-eosin, Luxol fast blue/cresyl violet, neurofilament protein, and glial fibrillary acidic protein. Each specimen was reviewed histologically and categorized according to a proposed focal MCD classification scheme that substitutes cytoarchitectural dysmorphism for cortical dysplasia and architectural disorganization for microdysgenesis. Results.—An MCD was recognized in 49 patients and grouped into 1 of the following 4 categories: (1) cytoarchitectural dysmorphism with balloon cells (n = 19), (2) cytoarchitectural dysmorphism without balloon cells (n = 12), (3) architectural disorganization (n = 8), or (4) polymicrogyria (n = 9). Conclusions.—The histopathologic features of focal MCD in a large epilepsy surgical cohort by using practical immunohistochemistry and a contemporary MCD classification scheme are described. It is proposed that the term focal cortical dysplasia be renamed as focal malformations of cortical development.


Children ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 637
Author(s):  
Valeria Venti ◽  
Maria Chiara Consentino ◽  
Pierluigi Smilari ◽  
Filippo Greco ◽  
Claudia Francesca Oliva ◽  
...  

Background. Malformations of cortical development (MCD) include a wide range of congenital disorders mostly causing severe cognitive dysfunction and epilepsy. Objective: to report on clinical features including cognitive involvement, epileptic seizures with response to antiseizure medications, comorbidities in young patients affected by MCD and followed in a single tertiary hospital. Patients and methods: A retrospective review of the medical records and magnetic resonance images (MRI) of 19 young patients with an age ranging between eight days and fifteen years affected by MCD and admitted to Pediatrics Department University of Catania, Italy from October 2009 and October 2020 were selected. Patients were distinguished in three groups following the Barcovich et al. 2012 classification for MCD: 4 (21%) in Group I; 8 (42%) in Group II; and, and 7 (37%) in Group III. Clinical features and MRI of the patients including cognitive involvement, epilepsy type and response to drugs treatment were analyzed. Results: In Group I, two patients showed cortical dysplasia and two dysembryoplastic neuroepithelial tumors plus focal cortical dysplasia; developmental delay/intellectual disability (DD/ID) was severe in one, moderate in one and absent in two; the type of seizures was in all the cases focal to bilateral tonic-clonic (FBTCs), and drug resistant was found in one case. In Group II, three patients showed neuronal hetero-topias and five had pachygyria-lissencephaly: DD/ID was severe in four, moderate in two, and absent in two; the type of seizure was focal (FS) in five, focal to bilateral tonic-clonic (FBTCs) in two, infantile spasms (IS) in one, and drug resistant was found in three. In Group III, six showed polymicrogyria and one schizencephaly: DD/ID was found severe in five, moderate in two, and the type of seizure was focal (FS) in five, FBTCS in two, and drug resistance was found in three.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Arpna Srivastava ◽  
Krishan Kumar ◽  
Jyotirmoy Banerjee ◽  
Manjari Tripathi ◽  
Vivek Dubey ◽  
...  

AbstractFocal cortical dysplasia (FCD) is a malformation of the cerebral cortex with poorly-defined epileptogenic zones (EZs), and poor surgical outcome in FCD is associated with inaccurate localization of the EZ. Hence, identifying novel epileptogenic markers to aid in the localization of EZ in patients with FCD is very much needed. High-throughput gene expression studies of FCD samples have the potential to uncover molecular changes underlying the epileptogenic process and identify novel markers for delineating the EZ. For this purpose, we, for the first time performed RNA sequencing of surgically resected paired tissue samples obtained from electrocorticographically graded high (MAX) and low spiking (MIN) regions of FCD type II patients and autopsy controls. We identified significant changes in the MAX samples of the FCD type II patients when compared to non-epileptic controls, but not in the case of MIN samples. We found significant enrichment for myelination, oligodendrocyte development and differentiation, neuronal and axon ensheathment, phospholipid metabolism, cell adhesion and cytoskeleton, semaphorins, and ion channels in the MAX region. Through the integration of both MAX vs non-epileptic control and MAX vs MIN RNA sequencing (RNA Seq) data, PLP1, PLLP, UGT8, KLK6, SOX10, MOG, MAG, MOBP, ANLN, ERMN, SPP1, CLDN11, TNC, GPR37, SLC12A2, ABCA2, ABCA8, ASPA, P2RX7, CERS2, MAP4K4, TF, CTGF, Semaphorins, Opalin, FGFs, CALB2, and TNC were identified as potential key regulators of multiple pathways related to FCD type II pathology. We have identified novel epileptogenic marker elements that may contribute to epileptogenicity in patients with FCD and could be possible markers for the localization of EZ.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Aparna Banerjee Dixit ◽  
Devina Sharma ◽  
Manjari Tripathi ◽  
Arpna Srivastava ◽  
Debasmita Paul ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document