Potential for Pharmacy–Public Health Collaborations Using Pharmacy-Based Point-of-Care Testing Services for Infectious Diseases

2017 ◽  
Vol 23 (6) ◽  
pp. 593-600 ◽  
Author(s):  
Paul O. Gubbins ◽  
Michael E. Klepser ◽  
Alex J. Adams ◽  
David M. Jacobs ◽  
Kelly M. Percival ◽  
...  
2018 ◽  
Vol 37 (1) ◽  
pp. 108-110 ◽  
Author(s):  
Kristina Keitel ◽  
Laurence Lacroix ◽  
Alain Gervaix

Author(s):  
Xi Mo ◽  
Xueliang Wang ◽  
Zhaoqin Zhu ◽  
Yuetian Yu ◽  
Dong Chang ◽  
...  

COVID-19 continues to circulate globally in 2021, while under the precise policy implementation of China’s public health system, the epidemic was quickly controlled, and society and the economy have recovered. During the pandemic response, nucleic acid detection of SARS-CoV-2 has played an indispensable role in the first line of defence. In the cases of emergency operations or patients presenting at fever clinics, nucleic acid detection is required to be performed and reported quickly. Therefore, nucleic acid point-of-care testing (POCT) technology for SARS-CoV-2 identification has emerged, and has been widely carried out at all levels of medical institutions. SARS-CoV-2 POCT has served as a complementary test to conventional polymerase chain reaction (PCR) batch tests, thus forming an experimental diagnosis platform that not only guarantees medical safety but also improves quality services. However, in view of the complexity of molecular diagnosis and the biosafety requirements involved, pathogen nucleic acid POCT is different from traditional blood-based physical and chemical index detection. No guidelines currently exist for POCT quality management, and there have been inconsistencies documented in practical operation. Therefore, Shanghai Society of Molecular Diagnostics, Shanghai Society of Laboratory Medicine, Clinical Microbiology Division of Shanghai Society of Microbiology and Shanghai Center for Clinical Laboratory have cooperated with experts in laboratory medicine to generate the present expert consensus. Based on the current spectrum of major infectious diseases in China, the whole-process operation management of pathogen POCT, including its application scenarios, biosafety management, personnel qualification, performance verification, quality control, and result reporting, are described here. This expert consensus will aid in promoting the rational application and robust development of this technology in public health defence and hospital infection management.


Author(s):  
Sonny M Assennato ◽  
Allyson V Ritchie ◽  
Cesar Nadala ◽  
Neha Goel ◽  
Hongyi Zhang ◽  
...  

AbstractNucleic acid amplification for the detection of SARS-CoV-2 RNA in respiratory samples is the standard method for diagnosis. These tests are centralised and therefore turnaround times can be 2-5 days. Point-of-care testing with rapid turnaround times would allow more effective triage in settings where patient management and infection control decisions need to be made rapidly.Inclusivity and specificity of the SAMBA II SARS-CoV-2 assay was determined by in silico analyses of the primers and probes. Analytical and clinical sensitivity and specificity of the SAMBA II SARS-CoV-2 Test was evaluated for analytical sensitivity and specificity. Clinical performance was evaluated in residual clinical samples compared to the Public Health England reference tests.The limit of detection of the SAMBA II SARS-CoV-2 Test is 250 cp/mL and is specific for detection of 2 regions of the SARS-CoV-2 genome. The clinical sensitivity was evaluated in 172 clinical samples provided by the Clinical Microbiology and Public Health Laboratory, Addenbrooke’s Hospital, Cambridge (CMPHL), which showed a sensitivity of 98.9% (95% CI 94.03-99.97%), specificity of 100% (95% CI 95.55-100%), PPV of 100% and NPV of 98.78% (92.02-99.82%) compared to testing by CMPHLSAMBA detected 3 positive samples that were initially negative by PHE Test. The data shows that the SAMBA II SARS-CoV-2 Test performs equivalently to the centralised testing methods with a much quicker turnaround time. Point of care testing, such as SAMBA, should enable rapid patient management and effective implementation of infection control measures.


Author(s):  
Abraham Joseph Pellissery ◽  
Abhinav Upadhyay ◽  
Kumar Venkitanarayanan

PLoS Medicine ◽  
2012 ◽  
Vol 9 (9) ◽  
pp. e1001306 ◽  
Author(s):  
Nitika Pant Pai ◽  
Caroline Vadnais ◽  
Claudia Denkinger ◽  
Nora Engel ◽  
Madhukar Pai

2018 ◽  
Vol 25 (4) ◽  
pp. 1606-1617
Author(s):  
Eliona Gkika ◽  
Anna Psaroulaki ◽  
Yannis Tselentis ◽  
Emmanouil Angelakis ◽  
Vassilis S Kouikoglou

This retrospective study investigates the potential benefits from the introduction of point-of-care tests for rapid diagnosis of infectious diseases. We analysed a sample of 441 hospitalized patients who had received a final diagnosis related to 18 pathogenic agents. These pathogens were mostly detected by standard tests but were also detectable by point-of-care testing. The length of hospital stay was partitioned into pre- and post-laboratory diagnosis stages. Regression analysis and elementary queueing theory were applied to estimate the impact of quick diagnosis on the mean length of stay and the utilization of healthcare resources. The analysis suggests that eliminating the pre-diagnosis times through point-of-care testing could shorten the mean length of hospital stay for infectious diseases by up to 34 per cent and result in an equal reduction in bed occupancy and other resources. Regression and other more sophisticated models can aid the financing decision-making of pilot point-of-care laboratories in healthcare systems.


Sign in / Sign up

Export Citation Format

Share Document