scholarly journals Quality Management for Point-Of-Care Testing of Pathogen Nucleic Acids: Chinese Expert Consensus

Author(s):  
Xi Mo ◽  
Xueliang Wang ◽  
Zhaoqin Zhu ◽  
Yuetian Yu ◽  
Dong Chang ◽  
...  

COVID-19 continues to circulate globally in 2021, while under the precise policy implementation of China’s public health system, the epidemic was quickly controlled, and society and the economy have recovered. During the pandemic response, nucleic acid detection of SARS-CoV-2 has played an indispensable role in the first line of defence. In the cases of emergency operations or patients presenting at fever clinics, nucleic acid detection is required to be performed and reported quickly. Therefore, nucleic acid point-of-care testing (POCT) technology for SARS-CoV-2 identification has emerged, and has been widely carried out at all levels of medical institutions. SARS-CoV-2 POCT has served as a complementary test to conventional polymerase chain reaction (PCR) batch tests, thus forming an experimental diagnosis platform that not only guarantees medical safety but also improves quality services. However, in view of the complexity of molecular diagnosis and the biosafety requirements involved, pathogen nucleic acid POCT is different from traditional blood-based physical and chemical index detection. No guidelines currently exist for POCT quality management, and there have been inconsistencies documented in practical operation. Therefore, Shanghai Society of Molecular Diagnostics, Shanghai Society of Laboratory Medicine, Clinical Microbiology Division of Shanghai Society of Microbiology and Shanghai Center for Clinical Laboratory have cooperated with experts in laboratory medicine to generate the present expert consensus. Based on the current spectrum of major infectious diseases in China, the whole-process operation management of pathogen POCT, including its application scenarios, biosafety management, personnel qualification, performance verification, quality control, and result reporting, are described here. This expert consensus will aid in promoting the rational application and robust development of this technology in public health defence and hospital infection management.

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4124 ◽  
Author(s):  
Fabiana Felix ◽  
Alexandre Baccaro ◽  
Lúcio Angnes

Disposable immunosensors are analytical devices used for the quantification of a broad variety of analytes in different areas such as clinical, environmental, agricultural and food quality management. They detect the analytes by means of the strong interactions between antibodies and antigens, which provide concentration-dependent signals. For the herein highlighted voltammetric immunosensors, the analytical measurements are due to changes in the electrical signals on the surface of the transducers. The possibility of using disposable and miniaturized immunoassays is a very interesting alternative for voltammetric analyses, mainly, when associated with screen-printing technologies (screen-printed electrodes, SPEs), and microfluidic platforms. The aim of this paper is to discuss a carefully selected literature about different examples of SPEs-based immunosensors associated with microfluidic technologies for diseases, food, agricultural and environmental analysis. Technological aspects of the development of the voltammetric immunoassays such as the signal amplification, construction of paper-based microfluidic platforms and the utilization of microfluidic devices for point-of-care testing will be presented as well.


Perfusion ◽  
2000 ◽  
Vol 15 (2) ◽  
pp. 137-142 ◽  
Author(s):  
John Bennett ◽  
Cindy Cervantes ◽  
Scott Pacheco

Point-of-care testing (POCT) in the operating room has changed dramatically since the implementation of the Clinical Laboratory Improvement Amendments (CLIA ‘88), which became effective in September 1992. With the implementation of CLIA ‘88, the Health Care Financing Administration (HCFA) mandated that human specimen testing ‘for the purpose of diagnosis, prevention, or treatment of any disease or impairment of, or the assessment of the health of human beings’, must be performed by a certified laboratory or testing site. To attain and maintain accreditation, the need for more stringent and comprehensive documentation has become imperative. The Joint Commission for the Accreditation of Hospitals (JCAHO), the College of American Pathologists (CAPS), HCFA, and state regulatory agencies require data such as staff credentialling, staff training/competency, procedure manuals, quality control logs, quality assurance/corrective action plans, correlation studies, proficiency testing results, and equipment maintenance logs to assure specimens are analyzed in a reliable manner by competent personnel so as not to jeopardize the safety and well being of the patient. Developing a comprehensive, ongoing survey readiness plan that includes a pre-survey checklist of all the documentation required and having this documentation in order and up to date well in advance of the survey will greatly enhance the probability of a successful survey conducted by the various regulatory agencies.


2009 ◽  
Vol 42 (3) ◽  
pp. 135 ◽  
Author(s):  
Catherine A. Hammett-Stabler ◽  
James H. Nichols

Author(s):  
Urs E. Nydegger ◽  
Erich Gygax ◽  
Thierry Carrel

AbstractPoint-of-care testing (POCT) remains under scrutiny by healthcare professionals because of its ill-tried, young history. POCT methods are being developed by a few major equipment companies based on rapid progress in informatics and nanotechnology. Issues as POCT quality control, comparability with standard laboratory procedures, standardisation, traceability and round robin testing are being left to hospitals. As a result, the clinical and operational benefits of POCT were first evident for patients on the operating table. For the management of cardiovascular surgery patients, POCT technology is an indispensable aid. Improvement of the technology has meant that clinical laboratory pathologists now recognise the need for POCT beyond their high-throughput areas.Clin Chem Lab Med 2006;44:1060–5.


Sign in / Sign up

Export Citation Format

Share Document