Modulation of innate and adaptive cellular immunity relevant to HIV-1 vaccine design by seminal plasma

AIDS ◽  
2017 ◽  
Vol 31 (3) ◽  
pp. 333-342 ◽  
Author(s):  
Kevin J. Selva ◽  
Stephen J. Kent ◽  
Matthew S. Parsons
2017 ◽  
Vol 2 (4) ◽  
Author(s):  
Lixin Yan ◽  
◽  
Lihong Liu ◽  
Yilin Wang ◽  
Xi Huang ◽  
...  

2010 ◽  
Vol 8 (8) ◽  
pp. 596-601 ◽  
Author(s):  
Bhavna H. Chohan ◽  
Anne Piantadosi ◽  
Julie Overbaugh
Keyword(s):  

2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Iris Cadima-Couto ◽  
Joao Goncalves

APOBEC proteins appeared in the cellular battle against HIV-1 as part of intrinsic cellular immunity. The antiretroviral activity of some of these proteins is overtaken by the action of HIV-1 Viral Infectivity Factor (Vif) protein. Since the discovery of APOBEC3G (A3G) as an antiviral factor, many advances have been made to understand its mechanism of action in the cell and how Vif acts in order to counteract its activity. The mainstream concept is that Vif overcomes the innate antiviral activity of A3G by direct protein binding and promoting its degradation via the cellular ubiquitin/proteasomal pathway. Vif may also inhibit A3G through mechanisms independent of proteasomal degradation. Binding of Vif to A3G is essential for its degradation since disruption of this interaction is predicted to stimulate intracellular antiviral immunity. In this paper we will discuss the different binding partners between both proteins as one of the major challenges for the development of new antiviral drugs.


2018 ◽  
Vol 9 ◽  
Author(s):  
Marta Colomer-Lluch ◽  
Alba Ruiz ◽  
Arnaud Moris ◽  
Julia G. Prado

PLoS ONE ◽  
2018 ◽  
Vol 13 (2) ◽  
pp. e0192278 ◽  
Author(s):  
Henk-Jan van den Ham ◽  
Jason D. Cooper ◽  
Jakub Tomasik ◽  
Sabine Bahn ◽  
Joeri L. Aerts ◽  
...  

2019 ◽  
Vol 93 (11) ◽  
Author(s):  
Jennifer A. Juno ◽  
Kathleen M. Wragg ◽  
Anne B. Kristensen ◽  
Wen Shi Lee ◽  
Kevin J. Selva ◽  
...  

ABSTRACT Sexual HIV-1 transmission occurs primarily in the presence of semen. Although data from macaque studies suggest that CCR5+ CD4+ T cells are initial targets for HIV-1 infection, the impact of semen on T cell CCR5 expression and ligand production remains inconclusive. To determine if semen modulates the lymphocyte CCR5 receptor/ligand axis, primary human T cell CCR5 expression and natural killer (NK) cell anti-HIV-1 antibody-dependent beta chemokine production was assessed following seminal plasma (SP) exposure. Purified T cells produce sufficient quantities of RANTES to result in a significant decline in CCR5bright T cell frequency following 16 h of SP exposure (P = 0.03). Meanwhile, NK cells retain the capacity to produce limited amounts of MIP-1α/MIP-1β in response to anti-HIV-1 antibody-dependent stimulation (median, 9.5% MIP-1α+ and/or MIP-1β+), despite the immunosuppressive nature of SP. Although these in vitro experiments suggest that SP-induced CCR5 ligand production results in the loss of surface CCR5 expression on CD4+ T cells, the in vivo implications are unclear. We therefore vaginally exposed five pigtail macaques to SP and found that such exposure resulted in an increase in CCR5+ HIV-1 target cells in three of the animals. The in vivo data support a growing body of evidence suggesting that semen exposure recruits target cells to the vagina that are highly susceptible to HIV-1 infection, which has important implications for HIV-1 transmission and vaccine design. IMPORTANCE The majority of HIV-1 vaccine studies do not take into consideration the impact that semen exposure might have on the mucosal immune system. In this study, we demonstrate that seminal plasma (SP) exposure can alter CCR5 expression on T cells. Importantly, in vitro studies of T cells in culture cannot replicate the conditions under which immune cells might be recruited to the genital mucosa in vivo, leading to potentially erroneous conclusions about the impact of semen on mucosal HIV-1 susceptibility.


2019 ◽  
Vol 14 (1) ◽  
pp. 30-42 ◽  
Author(s):  
Qian Wang ◽  
Linqi Zhang

AbstractRemarkable progress has been achieved for prophylactic and therapeutic interventions against human immunodeficiency virus type I (HIV-1) through antiretroviral therapy. However, vaccine development has remained challenging. Recent discoveries in broadly neutralizing monoclonal antibodies (bNAbs) has led to the development of multiple novel vaccine approaches for inducing bNAbs-like antibody response. Structural and dynamic studies revealed several vulnerable sites and states of the HIV-1 envelop glycoprotein (Env) during infection. Our review aims to highlight these discoveries and rejuvenate our endeavor in HIV-1 vaccine design and development.


2017 ◽  
Vol 13 (5) ◽  
pp. e1006402 ◽  
Author(s):  
Andrea Introini ◽  
Stéphanie Boström ◽  
Frideborg Bradley ◽  
Anna Gibbs ◽  
Axel Glaessgen ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-24 ◽  
Author(s):  
P. J. Klasse

Neutralizing antibodies (NAbs) can be both sufficient and necessary for protection against viral infections, although they sometimes act in concert with cellular immunity. Successful vaccines against viruses induce NAbs but vaccine candidates against some major viral pathogens, including HIV-1, have failed to induce potent and effective such responses. Theories of how antibodies neutralize virus infectivity have been formulated and experimentally tested since the 1930s; and controversies about the mechanistic and quantitative bases for neutralization have continually arisen. Soluble versions of native oligomeric viral proteins that mimic the functional targets of neutralizing antibodies now allow the measurement of the relevant affinities of NAbs. Thereby the neutralizing occupancies on virions can be estimated and related to the potency of the NAbs. Furthermore, the kinetics and stoichiometry of NAb binding can be compared with neutralizing efficacy. Recently, the fundamental discovery that the intracellular factor TRIM21 determines the degree of neutralization of adenovirus has provided new mechanistic and quantitative insights. Since TRIM21 resides in the cytoplasm, it would not affect the neutralization of enveloped viruses, but its range of activity against naked viruses will be important to uncover. These developments bring together the old problems of virus neutralization—mechanism, stoichiometry, kinetics, and efficacy—from surprising new angles.


Sign in / Sign up

Export Citation Format

Share Document