scholarly journals Restriction Factors: From Intrinsic Viral Restriction to Shaping Cellular Immunity Against HIV-1

2018 ◽  
Vol 9 ◽  
Author(s):  
Marta Colomer-Lluch ◽  
Alba Ruiz ◽  
Arnaud Moris ◽  
Julia G. Prado
2015 ◽  
Vol 13 (6) ◽  
pp. 448-461 ◽  
Author(s):  
Natacha Merindol ◽  
Lionel Berthoux

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Charlotte Martinat ◽  
Arthur Cormier ◽  
Joëlle Tobaly-Tapiero ◽  
Noé Palmic ◽  
Nicoletta Casartelli ◽  
...  

AbstractSAMHD1 is a cellular triphosphohydrolase (dNTPase) proposed to inhibit HIV-1 reverse transcription in non-cycling immune cells by limiting the supply of the dNTP substrates. Yet, phosphorylation of T592 downregulates SAMHD1 antiviral activity, but not its dNTPase function, implying that additional mechanisms contribute to viral restriction. Here, we show that SAMHD1 is SUMOylated on residue K595, a modification that relies on the presence of a proximal SUMO-interacting motif (SIM). Loss of K595 SUMOylation suppresses the restriction activity of SAMHD1, even in the context of the constitutively active phospho-ablative T592A mutant but has no impact on dNTP depletion. Conversely, the artificial fusion of SUMO2 to a non-SUMOylatable inactive SAMHD1 variant restores its antiviral function, a phenotype that is reversed by the phosphomimetic T592E mutation. Collectively, our observations clearly establish that lack of T592 phosphorylation cannot fully account for the restriction activity of SAMHD1. We find that SUMOylation of K595 is required to stimulate a dNTPase-independent antiviral activity in non-cycling immune cells, an effect that is antagonized by cyclin/CDK-dependent phosphorylation of T592 in cycling cells.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 504
Author(s):  
Ananda Ayyappan Jaguva Vasudevan ◽  
Daniel Becker ◽  
Tom Luedde ◽  
Holger Gohlke ◽  
Carsten Münk

Non-human primates (NHP) are an important source of viruses that can spillover to humans and, after adaptation, spread through the host population. Whereas HIV-1 and HTLV-1 emerged as retroviral pathogens in humans, a unique class of retroviruses called foamy viruses (FV) with zoonotic potential are occasionally detected in bushmeat hunters or zookeepers. Various FVs are endemic in numerous mammalian natural hosts, such as primates, felines, bovines, and equines, and other animals, but not in humans. They are apathogenic, and significant differences exist between the viral life cycles of FV and other retroviruses. Importantly, FVs replicate in the presence of many well-defined retroviral restriction factors such as TRIM5α, BST2 (Tetherin), MX2, and APOBEC3 (A3). While the interaction of A3s with HIV-1 is well studied, the escape mechanisms of FVs from restriction by A3 is much less explored. Here we review the current knowledge of FV biology, host restriction factors, and FV–host interactions with an emphasis on the consequences of FV regulatory protein Bet binding to A3s and outline crucial open questions for future studies.


Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 100
Author(s):  
Eric Rossi ◽  
Megan E. Meuser ◽  
Camille J. Cunanan ◽  
Simon Cocklin

The capsid (CA) protein of the human immunodeficiency virus type 1 (HIV-1) is an essential structural component of a virion and facilitates many crucial life cycle steps through interactions with host cell factors. Capsid shields the reverse transcription complex from restriction factors while it enables trafficking to the nucleus by hijacking various adaptor proteins, such as FEZ1 and BICD2. In addition, the capsid facilitates the import and localization of the viral complex in the nucleus through interaction with NUP153, NUP358, TNPO3, and CPSF-6. In the later stages of the HIV-1 life cycle, CA plays an essential role in the maturation step as a constituent of the Gag polyprotein. In the final phase of maturation, Gag is cleaved, and CA is released, allowing for the assembly of CA into a fullerene cone, known as the capsid core. The fullerene cone consists of ~250 CA hexamers and 12 CA pentamers and encloses the viral genome and other essential viral proteins for the next round of infection. As research continues to elucidate the role of CA in the HIV-1 life cycle and the importance of the capsid protein becomes more apparent, CA displays potential as a therapeutic target for the development of HIV-1 inhibitors.


2010 ◽  
Vol 84 (23) ◽  
pp. 12300-12314 ◽  
Author(s):  
Hanna-Mari Tervo ◽  
Oliver T. Keppler

ABSTRACT An immunocompetent, permissive, small-animal model would be valuable for the study of human immunodeficiency virus type 1 (HIV-1) pathogenesis and for the testing of drug and vaccine candidates. However, the development of such a model has been hampered by the inability of primary rodent cells to efficiently support several steps of the HIV-1 replication cycle. Although transgenesis of the HIV receptor complex and human cyclin T1 have been beneficial, additional late-phase blocks prevent robust replication of HIV-1 in rodents and limit the range of in vivo applications. In this study, we explored the HIV-1 susceptibility of rabbit primary T cells and macrophages. Envelope-specific and coreceptor-dependent entry of HIV-1 was achieved by expressing human CD4 and CCR5. A block of HIV-1 DNA synthesis, likely mediated by TRIM5, was overcome by limited changes to the HIV-1 gag gene. Unlike with mice and rats, primary cells from rabbits supported the functions of the regulatory viral proteins Tat and Rev, Gag processing, and the release of HIV-1 particles at levels comparable to those in human cells. While HIV-1 produced by rabbit T cells was highly infectious, a macrophage-specific infectivity defect became manifest by a complex pattern of mutations in the viral genome, only part of which were deamination dependent. These results demonstrate a considerable natural HIV-1 permissivity of the rabbit species and suggest that receptor complex transgenesis combined with modifications in gag and possibly vif of HIV-1 to evade species-specific restriction factors might render lagomorphs fully permissive to infection by this pathogenic human lentivirus.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Iris Cadima-Couto ◽  
Joao Goncalves

APOBEC proteins appeared in the cellular battle against HIV-1 as part of intrinsic cellular immunity. The antiretroviral activity of some of these proteins is overtaken by the action of HIV-1 Viral Infectivity Factor (Vif) protein. Since the discovery of APOBEC3G (A3G) as an antiviral factor, many advances have been made to understand its mechanism of action in the cell and how Vif acts in order to counteract its activity. The mainstream concept is that Vif overcomes the innate antiviral activity of A3G by direct protein binding and promoting its degradation via the cellular ubiquitin/proteasomal pathway. Vif may also inhibit A3G through mechanisms independent of proteasomal degradation. Binding of Vif to A3G is essential for its degradation since disruption of this interaction is predicted to stimulate intracellular antiviral immunity. In this paper we will discuss the different binding partners between both proteins as one of the major challenges for the development of new antiviral drugs.


2018 ◽  
Vol 16 (3) ◽  
pp. 184-207 ◽  
Author(s):  
Vanessa D`Urbano ◽  
Elisa De Crignis ◽  
Maria Carla Re

Mammalian cells have evolved several mechanisms to prevent or block lentiviral infection and spread. Among the innate immune mechanisms, the signaling cascade triggered by type I interferon (IFN) plays a pivotal role in limiting the burden of HIV-1. In the presence of IFN, human cells upregulate the expression of a number of genes, referred to as IFN-stimulated genes (ISGs), many of them acting as antiviral restriction factors (RFs). RFs are dominant proteins that target different essential steps of the viral cycle, thereby providing an early line of defense against the virus. The identification and characterization of RFs have provided unique insights into the molecular biology of HIV-1, further revealing the complex host-pathogen interplay that characterizes the infection. The presence of RFs drove viral evolution, forcing the virus to develop specific proteins to counteract their activity. The knowledge of the mechanisms that prevent viral infection and their viral counterparts may offer new insights to improve current antiviral strategies. This review provides an overview of the RFs targeting HIV-1 replication and the mechanisms that regulate their expression as well as their impact on viral replication and the clinical course of the disease.


2018 ◽  
Vol 93 (2) ◽  
Author(s):  
Romain Appourchaux ◽  
Mathilde Delpeuch ◽  
Li Zhong ◽  
Julien Burlaud-Gaillard ◽  
Kevin Tartour ◽  
...  

ABSTRACT The interferon-induced transmembrane proteins (IFITMs) are a family of highly related antiviral factors that affect numerous viruses at two steps: in target cells by sequestering incoming viruses in endosomes and in producing cells by leading to the production of virions that package IFITMs and exhibit decreased infectivity. While most studies have focused on the former, little is known about the regulation of the negative imprinting of virion particle infectivity by IFITMs and about its relationship with target cell protection. Using a panel of IFITM3 mutants against HIV-1, we have explored these issues as well as others related to the biology of IFITM3, in particular virion packaging, stability, the relation to CD63/multivesicular bodies (MVBs), the modulation of cholesterol levels, and the relationship between negative imprinting of virions and target cell protection. The results that we have obtained exclude a role for cholesterol and indicate that CD63 accumulation does not directly relate to an antiviral behavior. We have defined regions that modulate the two antiviral properties of IFITM3 as well as novel domains that modulate protein stability and that, in so doing, influence the extent of its packaging into virions. The results that we have obtained, however, indicate that, even in the context of an IFITM-susceptible virus, IFITM3 packaging is not sufficient for negative imprinting. Finally, while most mutations concomitantly affect target cell protection and negative imprinting, a region in the C-terminal domain (CTD) exhibits a differential behavior, potentially highlighting the regulatory role that this domain may play in the two antiviral activities of IFITM3. IMPORTANCE IFITM proteins have been associated with the sequestration of incoming virions in endosomes (target cell protection) and with the production of virion particles that incorporate IFITMs and exhibit decreased infectivity (negative imprinting of virion infectivity). How the latter is regulated and whether these two antiviral properties are related remain unknown. By examining the behavior of a large panel of IFITM3 mutants against HIV-1, we determined that IFITM3 mutants are essentially packaged into virions proportionally to their intracellular levels of expression. However, even in the context of an IFITM-susceptible virus, IFITM3 packaging is not sufficient for the antiviral effects. Most mutations were found to concomitantly affect both antiviral properties of IFITM3, but one CTD mutant exhibited a divergent behavior, possibly highlighting a novel regulatory role for this domain. These findings thus advance our comprehension of how this class of broad antiviral restriction factors acts.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Richard J Miles ◽  
Claire Kerridge ◽  
Laura Hilditch ◽  
Christopher Monit ◽  
David A Jacques ◽  
...  

The type one interferon induced restriction factor Myxovirus resistance B (MxB) restricts HIV-1 nuclear entry evidenced by inhibition of 2-LTR but not linear forms of viral DNA. The HIV-1 capsid is the key determinant of MxB sensitivity and cofactor binding defective HIV-1 capsid mutants P90A (defective for cyclophilin A and Nup358 recruitment) and N74D (defective for CPSF6 recruitment) have reduced dependency on nuclear transport associated cofactors, altered integration targeting preferences and are not restricted by MxB expression. This has suggested that nuclear import mechanism may determine MxB sensitivity. Here we have use genetics to separate HIV-1 nuclear import cofactor dependence from MxB sensitivity. We provide evidence that MxB sensitivity depends on HIV-1 capsid conformation, rather than cofactor recruitment. We show that depleting CPSF6 to change nuclear import pathway does not impact MxB sensitivity, but mutants that recapitulate the effect of Cyclophilin A binding on capsid conformation and dynamics strongly impact MxB sensitivity. We demonstrate that HIV-1 primary isolates have different MxB sensitivities due to cytotoxic T lymphocyte (CTL) selected differences in Gag sequence but similar cofactor dependencies. Overall our work demonstrates a complex relationship between cyclophilin dependence and MxB sensitivity likely driven by CTL escape. We propose that cyclophilin binding provides conformational flexibility to HIV-1 capsid facilitating simultaneous evasion of capsid-targeting restriction factors including TRIM5 as well as MxB.


2021 ◽  
Vol 118 (21) ◽  
pp. e2101450118
Author(s):  
Tafhima Haider ◽  
Xenia Snetkov ◽  
Clare Jolly

SERINC5 is a potent lentiviral restriction factor that gets incorporated into nascent virions and inhibits viral fusion and infectivity. The envelope glycoprotein (Env) is a key determinant for SERINC restriction, but many aspects of this relationship remain incompletely understood, and the mechanism of SERINC5 restriction remains unresolved. Here, we have used mutants of HIV-1 and HIV-2 to show that truncation of the Env cytoplasmic tail (ΔCT) confers complete resistance of both viruses to SERINC5 and SERINC3 restriction. Critically, fusion of HIV-1 ΔCT virus was not inhibited by SERINC5 incorporation into virions, providing a mechanism to explain how EnvCT truncation allows escape from restriction. Neutralization and inhibitor assays showed ΔCT viruses have an altered Env conformation and fusion kinetics, suggesting that EnvCT truncation dysregulates the processivity of entry, in turn allowing Env to escape targeting by SERINC5. Furthermore, HIV-1 and HIV-2 ΔCT viruses were also resistant to IFITMs, another entry-targeting family of restriction factors. Notably, while the EnvCT is essential for Env incorporation into HIV-1 virions and spreading infection in T cells, HIV-2 does not require the EnvCT. Here, we reveal a mechanism by which human lentiviruses can evade two potent Env-targeting restriction factors but show key differences in the capacity of HIV-1 and HIV-2 to exploit this. Taken together, this study provides insights into the interplay between HIV and entry-targeting restriction factors, revealing viral plasticity toward mechanisms of escape and a key role for the long lentiviral EnvCT in regulating these processes.


Sign in / Sign up

Export Citation Format

Share Document