scholarly journals Do plants modulate biomass allocation in response to petroleum pollution?

2010 ◽  
Vol 6 (6) ◽  
pp. 811-814 ◽  
Author(s):  
Ming Nie ◽  
Qiang Yang ◽  
Li-Fen Jiang ◽  
Chang-Ming Fang ◽  
Jia-Kuan Chen ◽  
...  

Biomass allocation is an important plant trait that responds plastically to environmental heterogeneities. However, the effects on this trait of pollutants owing to human activities remain largely unknown. In this study, we investigated the response of biomass allocation of Phragmites australis to petroleum pollution by a 13 CO 2 pulse-labelling technique. Our data show that plant biomass significantly decreased under petroleum pollution, but the root–shoot ratio for both plant biomass and 13 C increased with increasing petroleum concentration, suggesting that plants could increase biomass allocation to roots in petroleum-polluted soil. Furthermore, assimilated 13 C was found to be significantly higher in soil, microbial biomass and soil respiration after soils were polluted by petroleum. These results suggested that the carbon released from roots is rapidly turned over by soil microbes under petroleum pollution. This study found that plants can modulate biomass allocation in response to petroleum pollution.

2021 ◽  
Vol 12 ◽  
Author(s):  
Chunhui Zhang ◽  
Nianxun Xi

In theory, changes in the amount of rainfall can change plant biomass allocation and subsequently influence coupled plant-soil microbial processes. However, testing patterns of combined responses of plants and soils remains a knowledge gap for terrestrial ecosystems. We carried out a comprehensive review of the available literature and conducted a meta-analysis to explore combined plant and soil microbial responses in grasslands exposed to experimental precipitation changes. We measured the effects of experimental precipitation changes on plant biomass, biomass allocation, and soil microbial biomass and tested for trade-offs between plant and soil responses to altered precipitation. We found that aboveground and belowground plant biomass responded asynchronically to precipitation changes, thereby leading to shifts in plant biomass allocation. Belowground plant biomass did not change under precipitation changes, but aboveground plant biomass decreased in precipitation reduction and increased in precipitation addition. There was a trade-off between responses of aboveground plant biomass and belowground plant biomass to precipitation reduction, but correlation wasn't found for precipitation addition. Microbial biomass carbon (C) did not change under the treatments of precipitation reduction. Increased root allocation may buffer drought stress for soil microbes through root exudations and neutralize microbial responses to precipitation reduction. However, precipitation addition increased microbial biomass C, potentially reflecting the removal of water limitation for soil microbial growth. We found that there were positive correlations between responses of aboveground plant biomass and microbial biomass C to precipitation addition, indicating that increased shoot growth probably promoted microbial responses via litter inputs. In sum, our study suggested that aboveground, belowground plant biomass and soil microbial biomass can respond asynchronically to precipitation changes, and emphasizes that testing the plant-soil system as a whole is necessary for forecasting the effects of precipitation changes on grassland systems.


2021 ◽  
Author(s):  
Xuhui Zhou ◽  
Lingyan Zhou ◽  
Yanghui He ◽  
Yuling Fu ◽  
Zhenggang Du ◽  
...  

Abstract Biomass allocation in plants is fundamental for understanding and predicting terrestrial carbon storage. Recent studies suggest that climate warming can differentially affect root and shoot biomass, and subsequently alter root: shoot ratio. However, warming effects on root: shoot ratio and their underlying drivers at a global scale remain unclear. Using a global synthesis of >300 studies, we here show that warming significantly increases biomass allocation to roots (by 13.1%), and two factors drive this response: mean annual precipitation of the site, and the type of mycorrhizal fungi associated with a plant. Warming-induced allocation to roots is greater in relatively drier habitats compared to shoots (by 15.1%), but lower in wetter sites (by 4.9%), especially for plants associated with arbuscular mycorrhizal fungi compared to ectomycorrhizal fungi. Root-biomass responses to warming predominantly determine the biomass allocation in terrestrial plants suggesting that warming can reinforce the importance of belowground resource uptake. Our study highlights that the wetness or dryness of a site and plants’ mycorrhizal associations strongly regulate terrestrial carbon cycle by altering biomass allocation strategies in a warmer world.


2011 ◽  
Vol 71-78 ◽  
pp. 2992-2998
Author(s):  
Ling Ma ◽  
Sheng Nan Liu ◽  
Xin Hua Ding ◽  
Wei Ma

In this paper, the spatial distributions and seasonal dynamics of soil microbes and microbial biomass were investigated in a typical reed marsh in Zhalong natural wetlands.We wanted to explore the main factors that impacted their spatio-temporal patterns. The results showed that: Bacteria were dominant, followed by actinomyces and fungi were at least in the soil microbes community. The seasonal dynamics of soil microbial biomass carbon and nitrogen were more regularly, and their change patterns were significantly as "W" types. The response of soil microbial biomass in Bottom (10-30cm) to time was slower than the surface, and it fluctuated tinily in every months. The correlation analysis shows that the soil nutrient and soil microbial activity had close relationship. Soil microbial biomass carbon and nitrogen were all significantly positively correlated to quantities of fungus, organic carbon content and Alkali-hytrolyzabel N content(P<0.01), but negative extremely significantly correlated with pH (P<0.01).


2021 ◽  
Author(s):  
Miao-Ping Xu ◽  
Jia-Yi Wang ◽  
Xin-Hui Han ◽  
Cheng-Jie Ren ◽  
Gai-He Yang

Abstract Soil microorganisms play an important role in the circulation of materials and nutrients between plants and soil ecosystems, but the drivers of microbial community composition and diversity remain uncertain in different vegetation restoration patterns. We studied soil physicochemical properties (i.e., soil moisture, bulk density, pH, soil nutrients, available nutrients), plant characteristics (i.e., Shannon index [HPlant] and Richness index [SPlant], litter biomass [LB], and fine root biomass [FRB]), and microbial variables (biomass, enzyme activity, diversity and composition of bacterial and fungal communities) in different plant succession patterns (Robinia pseudoacacia [MF], Caragana korshinskii [SF] and grassland [GL]) on the Loess Plateau. The herb communities, soil microbial biomass and enzyme activities were strongly affected by vegetation restoration. And soil bacterial and fungal communities were significantly different from each other at the sites. Furthermore, LB and FRB were significantly positively correlated with SBacteria, soil microbial biomass, enzyme activities, Proteobacteria, Zygomycota and Cercozoa, while negatively correlated with Actinobacteria and Basidiomycota. In addition, soil water content (SW), pH and nutrients have important effects on the bacterial and fungal diversities, Acidobacteria, Proteobacteria, Nitrospirae, Zygomycota and microbial biomass. Furthermore, plant characteristics and soil properties modulated the composition and diversity of soil microorganisms, respectively. Overall, the relative contribution of vegetation and soil to the diversity and composition of soil bacterial and fungal communities illustrated that plant characteristics and soil properties may synergistically modulate soil microbial communities. And soil bacterial and fungal communities mainly depend on plant biomass and soil nutrients.


2016 ◽  
Vol 8 (2) ◽  
pp. 1126-1132 ◽  
Author(s):  
Sanjay Arora ◽  
Divya Sahni

In modern agriculture, chemical pesticides are frequently used in agricultural fields to increase crop production. Besides combating insect pests, these insecticides also affect the activity and population of beneficial soil microbial communities. Chemical pesticides upset the activities of soil microbes and thus may affect the nutritional quality of soils. This results in serious ecological consequences. Soil microbes had different response to different pesticides. Soil microbial biomass that plays an important role in the soil ecosystem where they have crucial role in nutrient cycling. It has been reported that field application of glyphosate increased microbial biomass carbon by 17% and microbial biomass nitrogen by 76% in nine soils at 14 days after treatment. The soil microbial biomass C increased significantly upto 30 days in chlorpyrifos as well as cartap hydrochloride treated soil, but thereafter decreased progressively with time. Soil nematodes, earthworms and protozoa are affected by field application rates of the fungicide fenpropimorph and other herbicides. Thus, there is need to assess the effect of indiscriminate use of pesticides on soil microorganisms, affecting microbial activity and soil fertility.


2017 ◽  
Vol 6 (1) ◽  
pp. 8 ◽  
Author(s):  
Hafidha Asni Akmalia

AbstrakIntensitas cahaya dan ketersediaan air merupakan faktor-faktor yang menjadi penunjang maupun penghambat pertumbuhan tergantung kisaran yang mampu diterima tanaman. Tujuan penelitian ini adalah untuk mengetahui pengaruh intensitas cahaya dan penyiraman terhadap pertumbuhan tanaman jagung. Rancangan penelitian yang digunakan adalah Rancangan Acak Lengkap dengan 3 faktor intensitas cahaya (L1 : 63694 ; L2 : 11408 dan L3 : 3897 Lux) dan 3 faktor penyiraman (pemberian air sebanyak W1 : 2 L; W2 : 1,6 L; W3 : 1,2 L). Tiap kombinasi perlakuan dibuat tiga ulangan. Penanaman jagung dilakukan di lahan Sawitsari, Yogyakarta. Jagung dipanen saat berumur 75 hari dengan karakter pertumbuhan yang diamati meliputi tinggi tanaman, jumlah daun, rasio daun, berat kering tanaman, dan rasio akar-tajuk. Data dianalisis menggunakan Analisis Sidik Ragam Varian (Anava) dilanjutkan dengan uji Duncan’s Multiple Range Test (DMRT) pada tingkat signifikansi 5%. Hasil penelitian menunjukkan bahwa L1W1 (63694 Lux ; 2 L) menyebabkan semua karakter pertumbuhan meningkat.Kata kunci : jagung, pertumbuhan, intensitas cahaya, penyiraman AbstractThe light intensity and water availability are the factors both supporting and supressing plant growth and it depends on which level that plant can accept. The aim of this research was to evaluate the effect of light intensity and watering in maize growth. This research used Randomized Completed Design with 3 regimes of light intensity (L1 : 63694, L2 : 11408 dan L3 : 3897 Lux) and 3 regimes of watering (W1 : 2 L, W2 : 1,6 L  and W3 : 1,2 L). Each combination was done with 3 replications and it was done in Sawitsari, Yogyakarta. Maize was harvested in 75 days after the treatment and the measured parameters were plant height, leaf total number, leaf ratio, root-shoot ratio, and plant biomass. Data were analyzed by Anava and DMRT test with significance level of 5%. The results showed that L1W1 treatment increased all parameters of growth. Keywords: maize, growth, light intensity, watering


2015 ◽  
Author(s):  
Masato Oda ◽  
Yasukazu Hosen ◽  
Uchada Sukchan

Nitrogen (N) and Carbon (C) are popular indicators of soil fertility; however, they are not soil fertility itself. In fact, they may be seen as just two aspects of the one entity. Soil microbial biomass (SMB) is also one of soil fertility indicators; furthermore, recent study of co-evolution between plants and microorganisms raises an idea that SMB might be the entity of fertility. The correlation between SMB and crop yield has been found in some studies but not in others. Those studies were conducted from the standpoint of N stock balance; therefore, the correlation between soil properties before planting and plant yields were analyzed. Here, we show—in our analysis of harvest-time soil properties and crop yields—that SMB correlates more strongly than inorganic N, total N, or total C with average crop yield under a wide range of cultivation conditions. From the viewpoint of co-evolution, plant biomass is a part of the plant and soil microorganism system; therefore, increasing SMB will balance by increasing plant biomass. In addition, the SMB could increase independently from the plant growth by artificial organic matter input. This concept will break through the yield limitation of conventional farming.


2015 ◽  
Author(s):  
Masato Oda ◽  
Yasukazu Hosen ◽  
Uchada Sukchan

Nitrogen (N) and Carbon (C) are popular indicators of soil fertility; however, they are not soil fertility itself. In fact, they may be seen as just two aspects of the one entity. Soil microbial biomass (SMB) is also one of soil fertility indicators; furthermore, recent study of co-evolution between plants and microorganisms raises an idea that SMB might be the entity of fertility. The correlation between SMB and crop yield has been found in some studies but not in others. Those studies were conducted from the standpoint of N stock balance; therefore, the correlation between soil properties before planting and plant yields were analyzed. Here, we show—in our analysis of harvest-time soil properties and crop yields—that SMB correlates more strongly than inorganic N, total N, or total C with average crop yield under a wide range of cultivation conditions. From the viewpoint of co-evolution, plant biomass is a part of the plant and soil microorganism system; therefore, increasing SMB will balance by increasing plant biomass. In addition, the SMB could increase independently from the plant growth by artificial organic matter input. This concept will break through the yield limitation of conventional farming.


Sign in / Sign up

Export Citation Format

Share Document