scholarly journals A call for full annual cycle research in animal ecology

2015 ◽  
Vol 11 (8) ◽  
pp. 20150552 ◽  
Author(s):  
Peter P. Marra ◽  
Emily B. Cohen ◽  
Scott R. Loss ◽  
Jordan E. Rutter ◽  
Christopher M. Tonra

For vertebrates, annual cycles are organized into a series of breeding and non-breeding periods that vary in duration and location but are inextricably linked biologically. Here, we show that our understanding of the fundamental ecology of four vertebrate classes has been limited by a severe breeding season research bias and that studies of individual and population-level responses to natural and anthropogenic change would benefit from a full annual cycle perspective. Recent emergence of new analytical and technological tools for studying individual and population-level animal movement could help reverse this bias. To improve understanding of species biology and reverse the population declines of many vertebrate species, a concerted effort to move beyond single season research is vital.

2011 ◽  
Vol 24 (20) ◽  
pp. 5292-5302 ◽  
Author(s):  
Cheng Qian ◽  
Congbin Fu ◽  
Zhaohua Wu

Abstract Climate change is not only reflected in the changes in annual means of climate variables but also in the changes in their annual cycles (seasonality), especially in the regions outside the tropics. In this study, the ensemble empirical mode decomposition (EEMD) method is applied to investigate the nonlinear trend in the amplitude of the annual cycle (which contributes 96% of the total variance) of China’s daily mean surface air temperature for the period 1961–2007. The results show that the variation and change in the amplitude are significant, with a peak-to-peak annual amplitude variation of 13% (1.8°C) of its mean amplitude and a significant linear decrease in amplitude by 4.6% (0.63°C) for this period. Also identified is a multidecadal change in amplitude from significant decreasing (−1.7% decade−1 or −0.23°C decade−1) to significant increasing (2.2% decade−1 or 0.29°C decade−1) occurring around 1993 that overlaps the systematic linear trend. This multidecadal change can be mainly attributed to the change in surface solar radiation, from dimming to brightening, rather than to a warming trend or an enhanced greenhouse effect. The study further proposes that the combined effect of the global dimming–brightening transition and a gradual increase in greenhouse warming has led to a perceived warming trend that is much larger in winter than in summer and to a perceived accelerated warming in the annual mean since the early 1990s in China. It also notes that the deseasonalization method (considering either the conventional repetitive climatological annual cycle or the time-varying annual cycle) can also affect trend estimation.


2018 ◽  
Vol 96 (10) ◽  
pp. 1170-1177 ◽  
Author(s):  
Kelly J. Sivy ◽  
Anne W. Nolin ◽  
Christopher L. Cosgrove ◽  
Laura R. Prugh

Snow cover can significantly impact animal movement and energetics, yet few studies have investigated the link between physical properties of snow and energetic costs. Quantification of thresholds in snow properties that influence animal movement are needed to help address this knowledge gap. Recent population declines of Dall’s sheep (Ovis dalli dalli Nelson, 1884) could be due in part to changing snow conditions. We examined the effect of snow density, snow depth, and snow hardness on sinking depths of Dall’s sheep tracks encountered in Wrangell–St. Elias National Park and Preserve, Alaska. Snow depth was a poor predictor of sinking depths of sheep tracks (R2 = 0.02, p = 0.38), as was mean weighted hardness (R2 = 0.09, p = 0.07). Across competing models, top layer snow density (0–10 cm) and sheep age class were the best predictors of track sink depths (R2 = 0.58). Track sink depth decreased with increasing snow density, and the snowpack supported the mass of a sheep above a density threshold of 329 ± 18 kg/m3 (mean ± SE). This threshold could aid interpretation of winter movement and energetic costs by animals, thus improving our ability to predict consequences of changing snowpack conditions on wildlife.


2019 ◽  
Vol 32 (21) ◽  
pp. 7369-7402 ◽  
Author(s):  
Yue Wang ◽  
ZhiMin Jian ◽  
Ping Zhao ◽  
Kang Xu ◽  
Haowen Dang ◽  
...  

Abstract Based on a transient simulation of the Community Earth System Model, we identified two anomalous “zonal triple-pole type” annual cycles in the equatorial Pacific sea surface temperature (SST), which were induced by precessional evolution of the summer-minus-winter insolation difference and the autumn-minus-spring insolation difference, respectively. For example, due to the increased summer–winter insolation contrast, a zonal positive–negative–positive pattern of equatorial SST anomalies was detected after subtracting basin-scale summer SST warming. The positive SST anomalies were associated with anomalous upward air flows over the western Pacific and eastern Pacific, whereas the negative SST anomalies in the central Pacific were coupled with anomalous downward air flows, oceanic upwelling, and thermocline cooling. These central Pacific anomalies were due to multiple air–sea interactions, particularly zonal advection feedback and Bjerknes feedback. This anomalous annual cycle also included winter equatorial air–sea coupled anomalies with similar spatial patterns but opposite signs. The annual mean equatorial rainfall was significantly increased west of 135°E but decreased between 135°E and 160°W in response to the moderately intensified Walker circulation west of 160°W. The autumn–spring insolation contrast induced similar seasonal reversed anomalies during autumn and spring, but the annual means were only weakly enhanced for the Walker circulation and the rainfall anomalies had smaller magnitudes east of 160°E. These distinct responses of the annual mean climate indicated different seasonal biases in terms of the equatorial SST and associated Walker circulation anomalies due to forcing by the two seasonal insolation contrasts, and these findings had meaningful implications for paleoceanographic studies.


2019 ◽  
Vol 32 (22) ◽  
pp. 7747-7761 ◽  
Author(s):  
Leif M. Swenson ◽  
Richard Grotjahn

Abstract Extreme precipitation events have major societal impacts. These events are rare and can have small spatial scale, making statistical analysis difficult; both factors are mitigated by combining events over a region. A methodology is presented to objectively define “coherent” regions wherein data points have matching annual cycles. Regions are found by training self-organizing maps (SOMs) on the annual cycle of precipitation for each grid point across the contiguous United States (CONUS). Using the annual cycle for our intended application minimizes problems caused by consecutive dry periods and localized extreme events. Multiple criteria are applied to identify useful numbers of regions for our future application. Criteria assess these properties for each region: having many more events than experienced by a single grid point, good connectedness and compactness, and robustness to changing the number of regions. Our methodology is applicable across datasets and is tested here on both reanalysis and gridded observational data. Precipitation regions obtained align with large-scale geographical features and are readily interpretable. Useful numbers of regions balance two conflicting preferences: larger regions contain more events and thereby have more robust statistics, but more compact regions allow weather patterns associated with extreme events to be aggregated with confidence. For 6-h precipitation, 12–15 regions over the CONUS optimize our metrics. The regions obtained are compared against two existing region archetypes. For example, a popular set of regions, based on nine groups of states, has less coherent regions than defining the same number of regions with our SOM methodology.


2019 ◽  
Vol 19 (12) ◽  
pp. 8101-8121 ◽  
Author(s):  
Ralf Bennartz ◽  
Frank Fell ◽  
Claire Pettersen ◽  
Matthew D. Shupe ◽  
Dirk Schuettemeyer

Abstract. We use the CloudSat 2006–2016 data record to estimate snowfall over the Greenland Ice Sheet (GrIS). We first evaluate CloudSat snowfall retrievals with respect to remaining ground-clutter issues. Comparing CloudSat observations to the GrIS topography (obtained from airborne altimetry measurements during IceBridge) we find that at the edges of the GrIS spurious high-snowfall retrievals caused by ground clutter occasionally affect the operational snowfall product. After correcting for this effect, the height of the lowest valid CloudSat observation is about 1200 m above the local topography as defined by IceBridge. We then use ground-based millimeter wavelength cloud radar (MMCR) observations obtained from the Integrated Characterization of Energy, Clouds, Atmospheric state, and Precipitation at Summit, Greenland (ICECAPS) experiment to devise a simple, empirical correction to account for precipitation processes occurring between the height of the observed CloudSat reflectivities and the snowfall near the surface. Using the height-corrected, clutter-cleared CloudSat reflectivities we next evaluate various Z–S relationships in terms of snowfall accumulation at Summit through comparison with weekly stake field observations of snow accumulation available since 2007. Using a set of three Z–S relationships that best agree with the observed accumulation at Summit, we then calculate the annual cycle snowfall over the entire GrIS as well as over different drainage areas and compare the derived mean values and annual cycles of snowfall to ERA-Interim reanalysis. We find the annual mean snowfall over the GrIS inferred from CloudSat to be 34±7.5 cm yr−1 liquid equivalent (where the uncertainty is determined by the range in values between the three different Z–S relationships used). In comparison, the ERA-Interim reanalysis product only yields 30 cm yr−1 liquid equivalent snowfall, where the majority of the underestimation in the reanalysis appears to occur in the summer months over the higher GrIS and appears to be related to shallow precipitation events. Comparing all available estimates of snowfall accumulation at Summit Station, we find the annually averaged liquid equivalent snowfall from the stake field to be between 20 and 24 cm yr−1, depending on the assumed snowpack density and from CloudSat 23±4.5 cm yr−1. The annual cycle at Summit is generally similar between all data sources, with the exception of ERA-Interim reanalysis, which shows the aforementioned underestimation during summer months.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4698 ◽  
Author(s):  
David R. Daversa ◽  
Camino Monsalve-Carcaño ◽  
Luis M. Carrascal ◽  
Jaime Bosch

Risks of parasitism vary over time, with infection prevalence often fluctuating with seasonal changes in the annual cycle. Identifying the biological mechanisms underlying seasonality in infection can enable better prediction and prevention of future infection peaks. Obtaining longitudinal data on individual infections and traits across seasons throughout the annual cycle is perhaps the most effective means of achieving this aim, yet few studies have obtained such information for wildlife. Here, we tracked spiny common toads (Bufo spinosus) within and across annual cycles to assess seasonal variation in movement, body temperatures and infection from the fungal parasite, Batrachochytrium dendrobatidis (Bd). Across annual cycles, toads did not consistently sustain infections but instead gained and lost infections from year to year. Radio-tracking showed that infected toads lose infections during post-breeding migrations, and no toads contracted infection following migration, which may be one explanation for the inter-annual variability in Bd infections. We also found pronounced seasonal variation in toad body temperatures. Body temperatures approached 0 °C during winter hibernation but remained largely within the thermal tolerance range of Bd. These findings provide direct documentation of migratory recovery (i.e., loss of infection during migration) and escape in a wild population. The body temperature reductions that we observed during hibernation warrant further consideration into the role that this period plays in seasonal Bd dynamics.


2019 ◽  
Vol 374 (1781) ◽  
pp. 20180046 ◽  
Author(s):  
George Wittemyer ◽  
Joseph M. Northrup ◽  
Guillaume Bastille-Rousseau

Wildlife tracking is one of the most frequently employed approaches to monitor and study wildlife populations. To date, the application of tracking data to applied objectives has focused largely on the intensity of use by an animal in a location or the type of habitat. While this has provided valuable insights and advanced spatial wildlife management, such interpretation of tracking data does not capture the complexity of spatio-temporal processes inherent to animal behaviour and represented in the movement path. Here, we discuss current and emerging approaches to estimate the behavioural value of spatial locations using movement data, focusing on the nexus of conservation behaviour and movement ecology that can amplify the application of animal tracking research to contemporary conservation challenges. We highlight the importance of applying behavioural ecological approaches to the analysis of tracking data and discuss the utility of comparative approaches, optimization theory and economic valuation to gain understanding of movement strategies and gauge population-level processes. First, we discuss innovations in the most fundamental movement-based valuation of landscapes, the intensity of use of a location, namely dissecting temporal dynamics in and means by which to weight the intensity of use. We then expand our discussion to three less common currencies for behavioural valuation of landscapes, namely the assessment of the functional (i.e. what an individual is doing at a location), structural (i.e. how a location relates to use of the broader landscape) and fitness (i.e. the return from using a location) value of a location. Strengthening the behavioural theoretical underpinnings of movement ecology research promises to provide a deeper, mechanistic understanding of animal movement that can lead to unprecedented insights into the interaction between landscapes and animal behaviour and advance the application of movement research to conservation challenges. This article is part of the theme issue ‘Linking behaviour to dynamics of populations and communities: application of novel approaches in behavioural ecology to conservation’.


2019 ◽  
Author(s):  
Ralf Bennartz ◽  
Frank Fell ◽  
Claire Pettersen ◽  
Matthew D. Shupe ◽  
Dirk Schuettemeyer

Abstract. We use the CloudSat data record 2006–2016 to estimate snowfall over the Greenland Ice Sheet (GrIS). We first evaluate CloudSat snowfall retrievals with respect to remaining ground-clutter issues. Comparing CloudSat observations to the GrIS topography (obtained from airborne altimetry measurements during IceBridge) we find that at the edges of the GrIS spurious high snowfall retrievals caused by ground clutter occasionally affect the operational snowfall product. After correcting for this effect, the height of the lowest valid CloudSat observation is about 1200 meters above the local topography as defined by IceBridge. We then use ground-based Millimeter Wavelength Cloud Radar (MMCR) observations obtained from the Integrated Characterization of Energy, Clouds, Atmospheric state, and Precipitation at Summit, Greenland (ICECAPS) experiment to devise a simple, empirical correction to account for precipitation processes occurring between the height of the observed CloudSat reflectivities and the snowfall near the surface. Using the height-corrected, clutter-cleared CloudSat reflectivities we next evaluate various Z-S relationships in terms of snowfall accumulation at Summit through comparison with weekly stake field observations of snow accumulation available since 2007. Using a set of three Z-S relationships that best agree with the observed accumulation at Summit, we then calculate the annual cycle snowfall over the entire GrIS as well as over different drainage areas and compare the so-derived mean values and annual cycles of snowfall to ERA-Interim reanalysis. We find the annual mean snowfall over the GrIS inferred from CloudSat to be 34 ± 7.5 cm/yr liquid equivalent (where the uncertainty is determined by the range in values between the three different Z-S relationships used). In comparison, the ERA-Interim reanalysis product only yields 30 cm/yr liquid equivalent snowfall, where the majority of the underestimation in the reanalysis appears to occur in the summer months over the higher GrIS and appears to be related to shallow precipitation events. Comparing all available estimates of snowfall accumulation at Summit Station, we find the annually averaged liquid equivalent snowfall from the stake field to be between 20 and 24 cm/yr, depending on the assumed snowpack density, and from CloudSat 23 ± 4.5 cm/yr. The annual cycle at Summit is generally similar between all data sources, with the exception of ERA-Interim reanalysis, which shows the aforementioned under-estimation during summer months.


Author(s):  
Francisco J. Díaz ◽  
Sandra V. Pereda ◽  
Alejandro H. Buschmann

In many coastal areas substrate is the limiting resource for benthic organisms. Some sessile species can be used as secondary substrate, reducing competition and increasing coexistence. In southern Chile, annual populations of Macrocystis pyrifera recruit and grow on the shells of Crepipatella fecunda. This study describes ecological interactions between the kelp and the slipper limpet over an annual cycle. The degree of kelp overgrowth was established by collecting sporophytes and through in situ submarine photography over a 10 month period (starting when kelp recruits became visible and ending when sporophytes were no longer present). Changes in the biochemical composition of the limpet tissue were also recorded by chemical analyses, to evaluate the potential effects (positive/neutral/negative) of kelp on C. fecunda nutritional condition. The results indicate that both species coexist, although kelp overgrowth may cause a decrease in carbohydrates in C. fecunda tissues, restricted to the period when the kelp forest reaches its maximum biomass. Individually, the short duration of the maximum overgrowth period and the size reached by C. fecunda females (up to 65 mm shell length) may enable rapid limpet recovery, avoiding competitive exclusion. On a population level, the M. pyrifera annual cycle generates the needed ‘break’ for C. fecunda populations, reducing the effects of kelp overgrowth. Thus, in the view of the neutral effect of kelp overgrowth, together with the positive effect of C. fecunda on M. pyrifera recruitment described somewhere else, this ecological interaction can be categorized as commensalism.


2010 ◽  
Vol 365 (1555) ◽  
pp. 3101-3112 ◽  
Author(s):  
Jessica Forrest ◽  
Abraham J. Miller-Rushing

Phenology affects nearly all aspects of ecology and evolution. Virtually all biological phenomena—from individual physiology to interspecific relationships to global nutrient fluxes—have annual cycles and are influenced by the timing of abiotic events. Recent years have seen a surge of interest in this topic, as an increasing number of studies document phenological responses to climate change. Much recent research has addressed the genetic controls on phenology, modelling techniques and ecosystem-level and evolutionary consequences of phenological change. To date, however, these efforts have tended to proceed independently. Here, we bring together some of these disparate lines of inquiry to clarify vocabulary, facilitate comparisons among habitat types and promote the integration of ideas and methodologies across different disciplines and scales. We discuss the relationship between phenology and life history, the distinction between organismal- and population-level perspectives on phenology and the influence of phenology on evolutionary processes, communities and ecosystems. Future work should focus on linking ecological and physiological aspects of phenology, understanding the demographic effects of phenological change and explicitly accounting for seasonality and phenology in forecasts of ecological and evolutionary responses to climate change.


Sign in / Sign up

Export Citation Format

Share Document