scholarly journals Effect of restoration on saltmarsh carbon accumulation in Eastern England

2019 ◽  
Vol 15 (1) ◽  
pp. 20180773 ◽  
Author(s):  
A. Burden ◽  
A. Garbutt ◽  
C. D. Evans

Wetland soils are globally important carbon stores, and natural wetlands provide a sink for atmospheric carbon dioxide (CO 2 ) through ongoing carbon accumulation. Recognition of coastal wetlands as a significant contributor to carbon storage (blue carbon) has generated interest into the climate change mitigation benefits of restoring or recreating saltmarsh habitat. However, the length of time a re-created marsh will take to become functionally equivalent to a natural (reference) system, or indeed, whether reference conditions are attainable, is largely unknown. Here, we describe a combined field chronosequence and modelling study of saltmarsh carbon accumulation and provide empirically based predictions of changes in the carbon sequestration rate over time following saltmarsh restoration. Carbon accumulation was initially rapid (average 1.04 t C ha −1 yr −1 during the first 20 years), slowing to a steady rate of around 0.65 t C ha −1 yr −1 thereafter. The resulting increase in C stock gave an estimated total C accumulation of 74 t C ha −1 in the century following restoration. This is approximately the same as our observations of natural marsh C content (69 t C ha −1 ), suggesting that it takes approximately 100 years for restored saltmarsh to obtain the same carbon stock as natural sites.

2013 ◽  
Vol 10 (2) ◽  
pp. 929-944 ◽  
Author(s):  
D. J. Charman ◽  
D. W. Beilman ◽  
M. Blaauw ◽  
R. K. Booth ◽  
S. Brewer ◽  
...  

Abstract. Peatlands are a major terrestrial carbon store and a persistent natural carbon sink during the Holocene, but there is considerable uncertainty over the fate of peatland carbon in a changing climate. It is generally assumed that higher temperatures will increase peat decay, causing a positive feedback to climate warming and contributing to the global positive carbon cycle feedback. Here we use a new extensive database of peat profiles across northern high latitudes to examine spatial and temporal patterns of carbon accumulation over the past millennium. Opposite to expectations, our results indicate a small negative carbon cycle feedback from past changes in the long-term accumulation rates of northern peatlands. Total carbon accumulated over the last 1000 yr is linearly related to contemporary growing season length and photosynthetically active radiation, suggesting that variability in net primary productivity is more important than decomposition in determining long-term carbon accumulation. Furthermore, northern peatland carbon sequestration rate declined over the climate transition from the Medieval Climate Anomaly (MCA) to the Little Ice Age (LIA), probably because of lower LIA temperatures combined with increased cloudiness suppressing net primary productivity. Other factors including changing moisture status, peatland distribution, fire, nitrogen deposition, permafrost thaw and methane emissions will also influence future peatland carbon cycle feedbacks, but our data suggest that the carbon sequestration rate could increase over many areas of northern peatlands in a warmer future.


2021 ◽  
Vol 31 (1) ◽  
pp. 192-199
Author(s):  
Borislav Grigorov

Abstract The present research deals with carbon sequestration, as an important process for mitigating the effects of climate change. The investigation focuses on a 30-year period and it covers only aboveground biomass that builds up from natural forest regrowth, excluding any plantation techniques. Potential carbon sequestration rate from natural forest regrowth in Godech Municipality was measured in Mg C ha−1 yr−1 and the resolution of the map was 1x1 km. The results of the study display that carbon accumulation values in the researched area were consistent with those that were expected in the largest parts of Bulgaria. The biggest share of Godech Municipality falls within the range of 0.82 – 0.96 Mg C ha−1 yr−1 with restricted areas around the villages of Barlya, Smolcha, Gubesh, Murgash and Varbnitsa that may accumulate between 0.96 – 1.11 Mg C ha−1 yr−1. In conclusion, carbon accumulation only from natural forest regrowth provides representative information, however it would have been better if different plantation techniques were regarded as well. The successful results of the investigation should encourage other studies of this type in the neighbouring municipalities.


2012 ◽  
Vol 9 (10) ◽  
pp. 14327-14364 ◽  
Author(s):  
D. J. Charman ◽  
D. W. Beilman ◽  
M. Blaauw ◽  
R. K. Booth ◽  
S. Brewer ◽  
...  

Abstract. Peatlands are a major terrestrial carbon store and a persistent natural carbon sink during the Holocene, but there is considerable uncertainty over the fate of peatland carbon in a changing climate. It is generally assumed that higher temperatures will increase peat decay, causing a positive feedback to climate warming and contributing to the global positive carbon cycle feedback. Here we use a new extensive database of peat profiles across northern high latitudes to examine spatial and temporal patterns of carbon accumulation over the past millennium. Opposite to expectations, our results indicate a small negative carbon cycle feedback from past changes in the long-term accumulation rates of northern peatlands. Total carbon accumulated over the last 1000 yr is linearly related to contemporary growing season length and photosynthetically active radiation, suggesting that variability in net primary productivity is more important than decomposition in determining long-term carbon accumulation. Furthermore, northern peatland carbon sequestration rate declines over the climate transition from the Medieval Climate Anomaly (MCA) to the Little Ice Age (LIA), probably because of lower LIA temperatures combined with increased cloudiness suppressing net primary productivity. Other factors including changing moisture status, peatland distribution, fire, nitrogen deposition, permafrost thaw and methane emissions will also influence future peatland carbon cycle feedbacks, but our data suggest that the carbon sequestration rate could increase over many areas of northern peatlands.


2012 ◽  
Vol 32 (9) ◽  
pp. 2953-2959
Author(s):  
刘杨 LIU Yang ◽  
于东升 YU Dongsheng ◽  
史学正 SHI Xuezheng ◽  
张广星 ZHANG Guangxing ◽  
秦发侣 QIN Falü

Author(s):  
Yingying Zhao ◽  
Hui Jin ◽  
Jiale Li ◽  
Guosheng Dou ◽  
Zhiyong Ji ◽  
...  

Abstract In the previous study, greenhouse gas CO2 is successfully used as the precipitator to realize its carbonation by calcium ions in seawater with the help of magnesium oxide. In this study, the reaction process is firstly analysed by proposed reaction mechanism, and then the dynamic simulation of the gas-liquid-solid system was carried out via Kinetic Monte Carlo simulation. Based on the reaction mechanism, the continuous experimental study was realized in a bubble column. The effects of air flow rate, carbon dioxide flow rate, temperature on the effectiveness evaluation indexes of decalcification efficiency, total mass transfer coefficient and carbon sequestration rate were studied. Finally, a bonnet tower with a diameter of 1 meter and a height of 8 meters was built to carry out the pilot test. In the laboratory experiments, the calcium removal rate reached 94%, the carbon sequestration rate reached 63.6%, and pure micron calcium carbonate products were obtained. The decalcification rate reached 95% in the pilot test, that is consistent with the results of the laboratory experiment.


Wetlands ◽  
2021 ◽  
Vol 41 (2) ◽  
Author(s):  
D.D.T.L. Dayathilake ◽  
E. Lokupitiya ◽  
V.P.I.S. Wijeratne

AbstractWetlands hold significant potential for climate change mitigation due to their high capacity to sequester atmospheric carbon dioxide (CO2). Colombo, Sri Lanka was recently declared as one of the eighteen global Ramsar wetland cities. The current study represents the first attempt to quantify soil organic carbon (SOC) stocks held by the urban freshwater wetlands in Colombo. The study focused on the extensive urban wetland ecosystems of Kolonnawa wetland and Thalawathugoda wetland park. SOC stocks were determined using three parameters: depth of soil, bulk density, and SOC concentration. Loss on ignition method was used in quantifying SOC concentrations. Average SOC stocks, up to a depth of 60 cm at Kolonnawa wetland and Thalawathugoda wetland park were estimated at 504 ± 14 t C/ha and 550 ± 23 t C/ha, respectively. Furthermore, the total SOC stock at Kolonnawa wetland and Thalawathugoda wetland park were estimated at 198,408 ± 5564 t CO2eq and 66,313 ± 2764 t CO2eq, respectively. When considering global estimates, it was found that freshwater wetlands in Colombo hold a higher SOC stock than tropical wet forests and tropical dry forests. The current study highlights the importance of urban ecosystems in mitigating the ever increasing concentrations of atmospheric CO2 .


Author(s):  
K. Vinod ◽  
A. Anasu Koya ◽  
V. A. Kunhi Koya ◽  
P. G. Silpa ◽  
P. K. Asokan ◽  
...  

Mangroves are keystone ecosystems which provide numerous environmental services. Mangroves assume significance as standing stores of sequestered atmospheric carbon and are therefore, important in the light of climate change mitigation. In this study, we attempted to assess the biomass of mangroves in the Kadalundi wetland, south-west coast of India and evaluated the potential of these mangroves to sequester and store carbon. The C-stocks of above-ground and root biomass were 83.32±11.06 t C ha-1 and 34.96±4.30 t C ha-1 respectively, while the C-stock in sediment was estimated to be 63.87±8.67 t C ha-1. The estimates of mean combined C-stocks in the mangrove biomass and sediment of Kadalundi shows that this estuarine mangrove wetland stored 182.15 t C ha-1, which was equivalent to 668.48 t CO2 ha-1. The mangroves which cover an area of 13.23 ha in the Kadalundi wetland is assumed to have a potential to sequester and store a substantial quantity of 2,409.84 t C which is equivalent to 8,844.11 t CO2. The study underscores the importance of these intertidal forests for climate change mitigation and stresses the importance of protecting the mangroves which provide many other important ecosystem services that benefit communities.


Sign in / Sign up

Export Citation Format

Share Document